23 research outputs found
Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability
© 2016 American Chemical Society. Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function
The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding
The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL’s α/β-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL’s catalytic site, including β2, β3–α3, and the lid. Using pulse-labeling hydrogen‒deuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on β3–α3 and progress to β5 and β4–α4, ultimately leading to the irreversible unfolding of regions that form LPL’s catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL’s α/β-hydrolase domain (T(m) of 34.8 °C). GPIHBP1 binding dramatically increases LPL stability (T(m) of 57.6 °C), while ANGPTL4 lowers the onset of LPL unfolding by ∼20 °C, both for LPL and LPL•GPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 °C but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism
Solution structure of recombinant somatomedin B domain from vitronectin produced in Pichia pastoris
The cysteine-rich somatomedin B domain (SMB) of the matrix protein vitronectin is involved in several important biological processes. First, it stabilizes the active conformation of the plasminogen activator inhibitor (PAI-1); second, it provides the recognition motif for cell adhesion via the cognate integrins (αvβ3, αvβ5, and αIIbβ3); and third, it binds the complex between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR). Previous structural studies on SMB have used recombinant protein expressed in Escherichia coli or SMB released from plasma-derived vitronectin by CNBr cleavage. However, different disulfide patterns and three-dimensional structures for SMB were reported. In the present study, we have expressed recombinant human SMB by two different eukaryotic expression systems, Pichia pastoris and Drosophila melanogaster S2-cells, both yielding structurally and functionally homogeneous protein preparations. Importantly, the entire population of our purified, recombinant SMB has a solvent exposure, both as a free domain and in complex with PAI-1, which is indistinguishable from that of plasma-derived SMB as assessed by amide hydrogen (1H/2H) exchange. This solvent exposure was only reproduced by one of three synthetic SMB products with predefined disulfide connectivities corresponding to those published previously. Furthermore, this connectivity was also the only one to yield a folded and functional domain. The NMR structure was determined for free SMB produced by Pichia and is largely consistent with that solved by X-ray crystallography for SMB in complex with PAI-1
Molecular architecture of the antiophidic protein DM64 and its binding specificity to myotoxin II from Bothrops asper venom
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor’s regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.Fundação Oswaldo Cruz/[INOVA GC VPPCB-007-FIO-18-2-9]/Fiocruz/BrasilFundação de Amparo à Pesquisa do Estado do Rio de Janeiro/[APQ1 E-6/010.001929/2019]/FAPERJ/BrasilConselho Nacional de Desenvolvimento Científico e Tecnológico/[Universal 426290/2018-6]/CNPq/BrasilNational Institutes of Health/[GM120600]/NIH/Estados UnidosNational Science Foundation/[NSF-ACI-1339649]/NSF/Estados UnidosSan Diego Supercomputer Center/[TG-MCB070039N]/SDSC/Estados UnidosTexas Advanced Computing Center/[TG457201]/TACC/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP