4 research outputs found

    Micro-scale modelling of the urban wind speed for air pollution applications

    No full text
    Modelling wind speeds in urban areas have many applications e.g. in relation to assessment of wind energy, modelling air pollution, and building design and engineering. Models for extrapolating the urban wind speed exist, but little attention has been paid to the influence of the upwind terrain and the foundations for the extrapolation schemes. To analyse the influence of the upwind terrain and the foundations for the extrapolation of the urban wind speed, measurements from six urban and non-urban stations were explored, and a model for the urban wind speed with and without upwind influence was developed and validated. The agreement between the wind directions at the stations is found to be good, and the influence of atmospheric stability, horizontal temperature gradients, land-sea breeze, temperature, global radiation and Monin-Obukhov Length is found to be small, although future work should explore if this is valid for other urban areas. Moreover, the model is found to perform reasonably well, but the upwind influence is overestimated. Areas of model improvement are thus identified. The upwind terrain thus influences the modelling of the urban wind speed to a large extent, and the fundamental assumptions for the extrapolation scheme are fulfilled for this specific case.Other Information Published in: Scientific Reports License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1038/s41598-019-50033-2</p

    Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India

    No full text
    <p>Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution.</p> <p><i>Implications</i>: Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.</p

    Long-term Air Pollution Exposure and Pneumonia Related Mortality in a Large Pooled European Cohort.

    Full text link
    RationaleAmbient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited.ObjectivesWe examined the association between long-term exposure to air pollution and pneumonia related mortality in adults in a pool of eight European cohorts.MethodsWithin the multicenter project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) were estimated using Europe-wide hybrid land use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality.Measurements and main resultsOf 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity [hazard ratios: 1.12 (0.99-1.26) per 10 µg/m3 for NO2; 1.10 (0.97-1.24) per 0.5 10-5m-1 for BC]. Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared to normal weight, unemployed, or non-smoking participants.ConclusionsLong-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely

    Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort.

    Get PDF
    BackgroundThe majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort.MethodsMean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants' baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise.ResultsThe pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found.ConclusionsWe found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjusting for spatially correlated air pollution and traffic noise
    corecore