175 research outputs found
Analyzing a Bose polaron across resonant interactions
Recently, two independent experiments reported the observation of long-lived
polarons in a Bose-Einstein condensate, providing an excellent setting to study
the generic scenario of a mobile impurity interacting with a quantum reservoir.
Here, we expand the experimental analysis by disentangling the effects of trap
inhomogeneities and the many-body continuum in one of these experiments. This
makes it possible to extract the energy of the polaron at a well-defined
density as a function of the interaction strength. Comparisons with quantum
Monte-Carlo as well as diagrammatic calculations show good agreement, and
provide a more detailed picture of the polaron properties at stronger
interactions than previously possible. Moreover, we develop a semi-classical
theory for the motional dynamics and three-body loss of the polarons, which
partly explains a previously unresolved discrepancy between theory and
experimental observations for repulsive interactions. Finally, we utilize
quantum Monte-Carlo calculations to demonstrate that the findings reported in
the two experiments are consistent with each other
Total costs and benefits of biomass in selected regions of the European Union
The paper describes results of the BioCosts project in which a comprehensive analysis of the economic and environmental performance of the energy use of biomass was carried out for selected existing facilities throughout the European Union. It is demonstrated that the appropriately organized use of biofuels has significant environmental advantages compared to the use of fossil fuels. Mitigation of global warming is the largest single incentive to use biofuels. However, only a few technologies are economically competitive under prevailing conditions, while others lead to up to 100% higher energy production costs than fossil fuels. Employment effects of using biofuels are small but positive.http://www.sciencedirect.com/science/article/B6V2S-41JM99D-4/1/514a3253589af4590f84544e2966bcb
OGLE-2005-BLG-018: Characterization of Full Physical and Orbital Parameters of a Gravitational Binary Lens
We present the analysis result of a gravitational binary-lensing event
OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent
strong features and a single weak feature separated from the strong features.
The light curve exhibits noticeable deviations from the best-fit model based on
standard binary parameters. To explain the deviation, we test models including
various higher-order effects of the motions of the observer, source, and lens.
From this, we find that it is necessary to account for the orbital motion of
the lens in describing the light curve. From modeling of the light curve
considering the parallax effect and Keplerian orbital motion, we are able to
measure not only the physical parameters but also a complete orbital solution
of the lens system. It is found that the event was produced by a binary lens
located in the Galactic bulge with a distance kpc from the Earth.
The individual lens components with masses and are separated with a semi-major axis of AU and
orbiting each other with a period yr. The event demonstrates
that it is possible to extract detailed information about binary lens systems
from well-resolved lensing light curves.Comment: 19 pages, 6 figure
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Functional Evolution of Leptin of Ochotona curzoniae in Adaptive Thermogenesis Driven by Cold Environmental Stress
BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau
Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations
Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the United States, is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine genetic risk factors for lentivirus infection. Sixty-nine matched pairs of infected cases and uninfected controls were identified among 736 naturally exposed sheep older than five years of age. These pairs were used in a genome-wide association study with 50,614 markers. A single SNP was identified in the ovine transmembrane protein (TMEM154) that exceeded genome-wide significance (unadjusted p-value 3×10−9). Sanger sequencing of the ovine TMEM154 coding region identified six missense and two frameshift deletion mutations in the predicted signal peptide and extracellular domain. Two TMEM154 haplotypes encoding glutamate (E) at position 35 were associated with infection while a third haplotype with lysine (K) at position 35 was not. Haplotypes encoding full-length E35 isoforms were analyzed together as genetic risk factors in a multi-breed, matched case-control design, with 61 pairs of 4-year-old ewes. The odds of infection for ewes with one copy of a full-length TMEM154 E35 allele were 28 times greater than the odds for those without (p-value<0.0001, 95% CI 5–1,100). In a combined analysis of nine cohorts with 2,705 sheep from Nebraska, Idaho, and Iowa, the relative risk of infection was 2.85 times greater for sheep with a full-length TMEM154 E35 allele (p-value<0.0001, 95% CI 2.36–3.43). Although rare, some sheep were homozygous for TMEM154 deletion mutations and remained uninfected despite a lifetime of significant exposure. Together, these findings indicate that TMEM154 may play a central role in ovine lentivirus infection and removing sheep with the most susceptible genotypes may help eradicate OPP and protect flocks from reinfection
The LeucoPatch® system in the management of hard-to-heal diabetic foot ulcers: study protocol for a randomised controlled trial
Background: Diabetic foot ulcers are a common and severe complication of diabetes mellitus. Standard treatment includes debridement, offloading, management of infection and revascularisation where appropriate, although healing times may be long. The LeucoPatch® device is used to generate an autologous platelet-rich fibrin and leucocyte wound dressing produced from the patient's own venous blood by centrifugation, but without the addition of any reagents. The final product comprises a thin, circular patch composed predominantly of fibrin together with living platelets and leucocytes. Promising results have been obtained in non-controlled studies this system, but this now needs to be tested in a randomised controlled trial (RCT). If confirmed, the LeucoPatch® may become an important new tool in the armamentarium in the management of diabetic foot ulcers which are hard-to-heal. Methods: People with diabetes and hard-to-heal ulcers of the foot will receive either pre-specified good standard care or good standard care supplemented by the application of the LeucoPatch® device. The primary outcome will be the percentage of ulcers healed within 20 weeks. Healing will be defined as complete epithelialisation without discharge that is maintained for 4 weeks and is confirmed by an observer blind to randomisation group. Discussion: Ulcers of the foot are a major source of morbidity to patients with diabetes and costs to health care economies. The study population is designed to be as inclusive as possible with the aim of maximising the external validity of any findings. The primary outcome measure is healing within 20 weeks of randomisation and the trial also includes a number of secondary outcome measures. Among these are rate of change in ulcer area as a predictor of the likelihood of eventual healing, minor and major amputation of the target limb, the incidence of infection and quality of life. Trial registration: International Standard Randomised Controlled Trial, ISRCTN27665670. Registered on 5 July 2013
Minimizing Variability of Cascade Impaction Measurements in Inhalers and Nebulizers
The purpose of this article is to catalogue in a systematic way the available information about factors that may influence the outcome and variability of cascade impactor (CI) measurements of pharmaceutical aerosols for inhalation, such as those obtained from metered dose inhalers (MDIs), dry powder inhalers (DPIs) or products for nebulization; and to suggest ways to minimize the influence of such factors. To accomplish this task, the authors constructed a cause-and-effect Ishikawa diagram for a CI measurement and considered the influence of each root cause based on industry experience and thorough literature review. The results illustrate the intricate network of underlying causes of CI variability, with the potential for several multi-way statistical interactions. It was also found that significantly more quantitative information exists about impactor-related causes than about operator-derived influences, the contribution of drug assay methodology and product-related causes, suggesting a need for further research in those areas. The understanding and awareness of all these factors should aid in the development of optimized CI methods and appropriate quality control measures for aerodynamic particle size distribution (APSD) of pharmaceutical aerosols, in line with the current regulatory initiatives involving quality-by-design (QbD)
Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC
Analysis of uncertainty decision making criteria
- …