132 research outputs found

    New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases

    Get PDF
    Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.Peer reviewe

    ENDOCRINOLOGY IN THE TIME OF COVID-19 Clinical management of neuroendocrine neoplasms (NENs)

    Get PDF
    In viral pandemics, most specifically Covid-19, many patients with neuroendocrine neoplasms (NENs), including phaeochromocytomas, paragangliomas and medullary thyroid carcinoma, may develop Covid-19 in a mild or severe form, or be concerned about the influence of viral infection relative to their anti-tumoral therapy. In general, newly presenting patients should be assessed, and patients recently receiving chemotherapy, targeted therapy or radionuclide therapy, or showing tumour growth, should be closely followed. For previously diagnosed patients, who have indolent disease, some delay in routine follow-up or treatment may not be problematic. However, patients developing acute secretory syndromes due to functional neuroendocrine neoplasms (such as of the pancreas, intestine or lung), phaeochromocytomas and paragangliomas, will require prompt treatment. Patients with life-threatening Covid-19-related symptoms should be urgently treated and long-term anti-tumoral treatments may be temporarily delayed. In patients with especially aggressive NENs, a careful judgement should be made regarding the severity of any Covid-19 illness, tumour grade, and the immunosuppressant effects of any planned chemotherapy, immunotherapy (e.g. interferon-alpha), targeted therapy or related treatment. In other cases, especially patients with completely resected NENs, or who are under surveillance for a genetic disorder, a telephone or delayed consultation may be in order, balancing the risk of a delay against that of the possible development of Covid-19.Peer reviewe

    Prolyl oligopeptidase inhibition reduces oxidative stress via reducing NADPH oxidase activity by activating protein phosphatase 2A

    Get PDF
    Oxidative stress (OS) is a common toxic feature in various neurodegenerative diseases. Therefore, reducing OS could provide a potential approach to achieve neuroprotection. Prolyl oligopeptidase (PREP) is a serine protease that is linked to neurodegeneration, as endogenous PREP inhibits autophagy and induces the accumulation of detrimental protein aggregates. As such, inhibition of PREP by a small-molecular inhibitor has provided neuroprotection in preclinical models of neurodegenerative diseases. In addition, PREP inhibition has been shown to reduce production of reactive oxygen species (ROS) and the absence of PREP blocks stress-induced ROS production. However, the mechanism behind PREP-related ROS regulation is not known. As we recently discovered PREP's physiological role as a protein phosphatase 2A (PP2A) regulator, we wanted to characterize PREP inhibition as an approach to reduce OS. We studied the impact of a PREP inhibitor, KYP-2047, on hydrogen peroxide and ferrous chloride induced ROS production and on cellular antioxidant response in HEK-293 and SHSY5Y cells. In addition, we used HEK-293 and SH-SY5Y PREP knock-out cells to validate the role of PREP on stress-induced ROS production. We were able to show that absence of PREP almost entirely blocks the stressinduced ROS production in both cell lines. Reduced ROS production and smaller antioxidant response was also seen in both cell lines after PREP inhibition by 10 mu M KYP-2047. Our results also revealed that the OS reducing mechanism of PREP inhibition is related to reduced activation of ROS producing NADPH oxidase through enhanced PP2A activation. In conclusion, our results suggest that PREP inhibition could also provide neuroprotection by reducing OS, thus broadening the scope of its beneficial effects on neurodegeneration

    Protein kinase C-activating isophthalate derivatives mitigate Alzheimer's disease-related cellular alterations

    Get PDF
    Abnormal protein kinase C (PKC) function contributes to many pathophysiological processes relevant for Alzheimer's disease (AD), such as amyloid precursor protein (APP) processing. Phorbol esters and other PKC activators have been demonstrated to enhance the secretion of soluble APP alpha (sAPP alpha), reduce the levels of beta-amyloid (A beta), induce synaptogenesis, and promote neuroprotection. We have previously described isophthalate derivatives as a structurally simple family of PKC activators. Here, we characterised the effects of isophthalate derivatives HMI-1a3 and HMI-1b11 on neuronal viability, neuroinflammatory response, processing of APP and dendritic spine density and morphology in in vitro. HMI-1a3 increased the viability of embryonic primary cortical neurons and decreased the production of the pro-inflammatory mediator TNF alpha, but not that of nitric oxide, in mouse neuron-BV2 microglia co-cultures upon LPS- and IFN-gamma-induced neuroinflammation. Furthermore, both HMI-1a3 and HMI-1b11 increased the levels of sAPPa relative to total sAPP and the ratio of A beta 42/A beta 40 in human SH-Sv5v neuroblastoma cells. Finally, bryostatin-1, but not HMI-1a3, increased the number of mushroom spines in proportion to total spine density in mature mouse hippocampal neuron cultures. These results suggest that the PKC activator HMI-1a3 exerts neuroprotective functions in the in vitro models relevant for AD by reducing the production of TNF alpha and increasing the secretion of neuroprotective sAPPa.Peer reviewe

    Prolyl Oligopeptidase Regulates Dopamine Transporter Oligomerization and Phosphorylation in a PKC- and ERK-Independent Manner

    Get PDF
    Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK

    Effectiveness of the Chest Strap Electrocardiogram to Detect Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is a significant cause of cardioembolic strokes. AF is often symptomless and intermittent, making its detection challenging. The aim of this study was to assess the possibility to use a chest strap (Suunto Movesense) to detect AF both by cardiologists and automated algorithms. A single channel electrocardiogram (ECG) from a chest strap of 220 patients (107 AF and 111 sinus rhythm SR with 2 inconclusive rhythms) were analyzed by 2 cardiologists (Doc1 and Doc2) and 2 different algorithms (COSEn and AFE-vidence). A 3-lead Holter served as the gold standard ECG for rhythm analysis. Both cardiologists evaluated the quality of the chest strap ECG to be superior to the quality of the Holter ECG; pPeer reviewe

    Using the nonlinear control of anaesthesia-induced hypersensitivity of EEG at burst suppression level to test the effects of radiofrequency radiation on brain function

    Get PDF
    Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed.BioMed Central Open acces

    Keratoendotheliitis Fugax Hereditaria : A Novel Cryopyrin-Associated Periodic Syndrome Caused by a Mutation in the Nucleotide-Binding Domain, Leucine-Rich Repeat Family, Pyrin Domain-Containing 3 (NLRP3) Gene

    Get PDF
    PURPOSE: To describe the phenotype and the genetic defect in keratoendotheliitis fugax hereditaria, an autosomal dominant keratitis that periodically affects the corneal endothelium and stroma, leading in some patients to opacities and decreased visual acuity. DESIGN: Cross-sectional, hospital-based study. METHODS: PATIENT POPULATION: Thirty affected and 7 unaffected subjects from 7 families, and 4 sporadic patients from Finland. OBSERVATION PROCEDURES: Ophthalmic examination and photography, corneal topography, specular microscopy, and optical coherence tomography in 34 patients, whole exome sequencing in 10 patients, and Sanger sequencing in 34 patients. MAIN OUTCOME MEASURES: Clinical phenotype, disease causing genetic variants. RESULTS: Unilateral attacks of keratoendotheliitis typically occurred 1-6 times a year (median, 2.5), starting at a median age of 11 years (range, 5-28 years), and lasted for 1-2 days. The attacks were characterized by cornea pseudoguttata and haze in the posterior corneal stroma, sometimes with a mild anterior chamber reaction, and got milder and less frequent in middle age. Seventeen (50%) patients had bilateral stroma! opacities. The disease was inherited as an autosomal dominant trait. A likely pathogenic variant c.61G > C in the NLRP3 gene, encoding cryopyrin, was detected in all 34 tested patients and segregated with the disease. This variant is present in both Finnish and non-Finnish European populations at a frequency of about 0.02% and 0.01%, respectively. CONCLUSION: Keratoendotheliitis fugax hereditaria is an autoinflammatory cryopyrin-associated periodic syndrome caused by a missense mutation c.61G > C in exon 1 of NLRP3 in Finnish patients. It is additionally expected to occur in other populations of European descent. ((c) 2018 The Author(s). Published by Elsevier Inc.Peer reviewe
    corecore