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Abstract 

Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate 
with aging and are reported in many neurodegenerative conditions. Together with decreased 
neuropeptide levels observed in aging and neurodegeneration, and PREP’s ability to cleave only small 
peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were 
disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors 
were developed during early stages of PREP research. These showed a lot of potential but variable results 
in experimental memory models, however, the initial excitement was short-lived and all of the clinical 
trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP’s 
ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more 
attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of 
alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP 
inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization 
process. Therefore, it is possible that PREP inhibitors altering interactions should have different 
characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-
localization with aSyn and with tau and amyloid-beta hints to PREP’s possible role not only in the 
synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less 
well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the 
development of PREP inhibitors for the treatment of neurodegenerative disorders. 
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1. Prolyl oligopeptidase (PREP) distribution and structure 

Prolyl oligopeptidase (PREP, also known as POP, PO or PEP; Fig 1) is a serine protease (EC 3.4.21.26) 

that is ubiquitously expressed throughout the body with the highest protein levels in brain, kidney, testis, 

and thymus, however, the expression levels do not necessarily correlate with the PREP enzymatic activity 

[1, 2] but this could be due the endogenous inhibition of PREP by α-2-macroglobulin (Tenorio-Laranga 

et al. 2013 Biochem Pharm.) or due the precence of fibroblast activation protein (FAP) that cleaves 

similar substrates as PREP but is insensitive for PREP inhibitors (Collins et al. 2004 Int J Biochem Cell 

biol). Moreover, lack of good PREP antibodies has also made the verification of distribution studies 

difficult. In brain, the highest PREP protein expression and activity is seen in cortical and nigrostriatal 

tissues [3, 4] with almost exclusive localization in the neuronal cells [5]. Besides, high PREP activity is 

seen in proliferating cells in peripheral tissues and in different tumors [1]. mRNA level of PREP in rat 

brain is the highest during perinatal development, notably during cellular differentiation and neuronal 

migration, while later on during development PREP mRNA levels gradually decrease into adulthood [6]. 

However, during ageing PREP mRNA levels are again dramatically increased [7].  

PREP is considered as evolutionary conserved enzyme that is present from archaeal species to human 

[9] although at least bacterial PREP has undergone several genetic modifications (Kaushik and 

Sowdhamini 2014). PREP was first identified as an oxytocin-cleaving enzyme from human uterine tissue 

[10] and later it was shown that catalytical PREP actions are exerted on the C-terminal side of the proline 

[11]. Initial crystallography studies with pig PREP demonstrated that PREP is a rigid structure composed 

of catalytical domain with α/β hydrolase fold and β-propeller domain (Fig. 1) [12, 13]. Eukaryotic PREP 

has restrictive requirements for its substrate, peptides larger than approximately 3 kDa (30 amino acids) 

cannot be cleaved by PREP [14] due to the position of a catalytical pocket between the catalytical and β-

propeller domain [12]. Initially, the tunnel of the unusual β-propeller domain was thought to act as the 
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access point for the substrate [13] but further studies have concluded that substrate access between PREP 

compartments is more likely [15, 16]. In recent years, PREP shift in equilibrium between closed and 

open conformation has been demonstrated to occur, notably PREP inhibition shifting the protein 

conformation to a closed form where flexible loop structures that are located near the putative entry site 

to the catalytical site could be essential in gating peptide access (Fig. 1) [17]. [18]. (Li et al. JBC 2010). 

This was supported by the finding that mutations allowing more flexible movements for e.g. loop A 

increased catalytic activity of PREP but their truncations or stabilization decreased catalytic activity 

(Szeltner et al. 2013). Additionally, Kaszuba et al. (2012) suggested based on molecular dynamics study 

that also these loops are highly mobile during open and closed conformation of PREP, and PREP 

inhibitor binding will stabilize these movements, particularly loop A. Another molecular dynamics model 

(Kaushik et al. 2014) even suggested that catalytical and β-propeller domain twist and then open to allow 

substrates to enter the catalytical site. However, a recent study by Tsigirotagi et al. (2017) showed by 

using hydrogen/deuterium exchange mass spectrometry that PREP inhibitor binding stabilizes 

particularly B and His-loops but not that much loop A, and also stabilized the movement of catalytic site 

and β-propeller   by allowing His-loop and β-propeller blade 1 to form bonds. Nevertheless, it is clear 

that PREP has active conformational dynamics and relevance of this for PREP functions has not been 

carefully characterized. 
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Figure 1A-B. The structure of PREP. PREP consists of two parts: catalytic and beta-propeller domain 
(A). Beta-propeller was thought to be the gating mechanism for substrates access to the active site, but 
later studies suggest that PREP is able to form openings between two domains, and that flexible loop-
structures near the opening gate substrate access. Loops A (yellow), B (red) and C (blue) are colored in 
the figure A. Classical substrate-like inhibitors, such as KYP-2047 (marked green in the panel B), bind 
to the Ser554 (black) in the active site and stabilize the inactive “closed” conformation of PREP (B). 

 

More recent studies have proposed that dynamics of PREP conformational changes could be taken into 

account to tailor PREP inhibitors that would more selectively affect either catalytical PREP activity or 

its protein-protein interaction [17, 19]. Already in the study by Lopez et al. (2016 ChemBioChem) using 

multiple quantum relaxation dispersion assay, two rather similar PREP inhibitors, KYP-2047 and Z-Pro-

prolinal had slightly different spectra on PREP. It is in line with recent reports of PREP inhibitors 

exhibiting different effects on cell differentiation. Researchers used two catalytical PREP inhibitors, 

KYP-2047 and SUAM-14746, but only the latter inhibited the differentiation of trophoblast stem cells, 
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modelling placental development [20]. Consequently, it could be speculated that PREP catalytical 

inhibitors can exert varied impact on the PREP non-catalytical functions, namely due to subtle changes 

in the PREP conformation. 

 

2. Neurodegenerative diseases with prominent proteinopathies 

One of the most common features of neurodegenerative disorders are protein aggregation and 

accumulation. Parkinson’s disease (PD) is characterized by the accumulation of aSyn aggregates that are 

a major component of Lewy bodies and Lewy neurites [21]. This hallmark is not exclusive to PD but is 

characteristic to all synucleinopathies, including dementia with Lewy bodies and multiple system atrophy 

[22]. On the other hand, the best-known Alzheimer’s disease (AD) hallmarks are extracellular amyloid-

beta (Aβ) aggregates but recent failures on drug development against Aβ have increased the interest on 

intracellular tau aggregation that is classically associated with dementia relater tauopathies, including 

AD. Both proteins share many characteristics as being partially unfolded proteins that under pathological 

conditions are prone to oligomerize and form insoluble aggregates [23]. 

Although largely debated which forms of aSyn are toxic, several studies suggest that intermediates 

formed during the aggregation process, aSyn oligomers and fibrils, are particularly toxic for 

dopaminergic neurons in substantia nigra, and can damage several cellular organelles, such as 

mitochondria to increase oxidative stress, and Golgi-ER and proteasomal processing to further increase 

aSyn aggregation. Additionally, aSyn fibrils can propagate by cell-to-cell transfer [24-26].  Similarly, 

elevated Tau phosphorylation leads to its release from microtubules, oligomerization and formation of 

neurofibrillary tangles [27, 28]. As with aSyn, Tau oligomers can exit cells and propagate pathology, and 

extracellular aSyn and Tau has been shown to activate glial cells and cause increased neuroinflammation 

[29, 30]. Moreover, protein aggregation in these disorders is not limited to the hallmark protein only; 
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Tau aggregates are seen in PD and in dementia with Lewy bodies and aSyn accumulation can be seen in 

AD [31]. Additionally, these proteins can interact and enhance aggregation [32]. Taken together, 

targeting intracellular protein aggregates could be the pathway to develop disease-modifying therapies 

for several neurodegenerative diseases. 

 

3. Early studies on PREP in neurodegenerative diseases and PREP inhibitor development 

After Walter et al. (1971) discovered prolyl endopeptidase [10], for the next three decades only PREP 

enzymatic activity was known and considered during the PREP inhibitor development. Little attention 

was directed at varied effects of PREP inhibition that could not have been easily explained by catalytical 

inhibition of PREP, for extensive reviews see [33, 34]. Consequently, strong emphasis was placed on 

potent PREP inhibitor development due to PREP’s ability to cleave short proline-containing 

neuropeptides in vitro with a lot of research published on potential endogenous PREP substrates. Some 

of the most studied neuropeptides that apart from in vitro data have some indirect evidence of in vivo 

peptide modulation after PREP inhibition are substance P, arginine-vasopressin [35], and thyrotropin-

releasing hormone (TRH) [36, 37]. Besides the aforementioned putative substrates, a comprehensive list 

of peptides linked to PREP catalysis from in vitro studies can be found in an earlier review by Garcia-

Horsman et al. 2007 [33]. 

Additionally, a possible link between PREP and amyloid precursor peptide (APP) processing was 

proposed. In the particular paper, short C-terminal Aβ sequences were used to screen for the proteases 

capable of generating Aβ from APP [38]. However, due to the size restrictions associated with PREP 

substrate [14] it is unlikely that PREP could cleave APP in vivo but Kato et al. (1997)[39] showed a 

significant decrease of Aβ(1-16) fragments after PREP inhibitor, Y-29794, treatment in the senescence 

accelerated mouse brain. Although promising results, the mechanism remained unclear and there have 
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been no further studies. It could be speculated that already cleaved short peptides originating from APP 

could be potential PREP substrates. However, peptidomics analyses have not yielded any conclusive 

results correlating putative PREP in vitro targets to ones obtained by peptide analyses from PREP 

inhibitor-treated animal tissue [40]. Additionally, decreased [41, 42] and increased [43] activity of PREP 

have been reported in the AD post mortem brains but this discrepancy could be attributed to the tissue 

collection and processing [33]. Another explanation could be the loss of neuronal cells in the assessed 

brain tissue samples as PREP is predominantly expressed in neurons and decreased activity could have 

arisen from loss of PREP rather than decrease in its activity [44]. PREP and Aβ deposit colocalization 

has been demonstrated in the brains of senescence accelerated mouse [45] as well as in AD patients post 

mortem brain samples [46]. Moreover, it has been shown that PREP activity is decreased in the brains of 

PD, dementia with Lewy bodies, and Huntington’s disease patients [41]. Decreased PREP activity has 

also been shown in PD patient cerebrospinal fluid samples [47]. However, these results should be 

interpreted with caution as post mortem tissue preservation and changes in redox state in tissue could 

have inactivated PREP [33, 48]. 

PREP has been implicated in the regulation of inositol cycle in social amoeba, Dictyostelium Discoideum 

[49], as well as in neuronal and glial cell lines where PREP inhibition was demonstrated to stimulate 

inositol production via substance P [50]. The authors indicated that this would explain discrepancies 

between cellular PREP localization and apparent neuropeptide release in the extracellular space [50]. 

They hypothesized that PREP involvement in the inositol processing could explain in vivo PREP 

inhibitor effects associated with enhanced memory, learning, and neuroprotection [51]. 

Following either of the hypotheses, it was believed that PREP inhibition could ablate imbalance in 

peptidergic systems that arise due to ageing. Fittingly, initial animal studies showed promise: PREP 

inhibition by JTP-4819 was shown to improve memory in aged and middle cerebral artery-occluded rats. 
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This effect was attributed to the increase in acetylcholine release and possibly decreased degradation of 

neuropeptides [52]. Additionally, PREP inhibition by S 17092 ameliorated cognitive decline in a monkey 

PD low-dose MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model. However, no histological 

evaluation of nigrostriatal tract or motor behavior in regard to MPTP impact on the dopaminergic neurons 

was described in this particular study [53]. Three PREP inhibitors, JTP-4819, Z-321, and S 17092, 

entered phase I and/or II clinical trials in late 90s but shortly thereafter trials were discontinued. However, 

these trials demonstrated that small molecule PREP inhibitors can be safely administered in humans [54-

56]. A later report on S 17092 explicitly stated that the pharmacodynamic parameters that were measured 

in phase I clinical trials did not allow determination of the therapeutic dose [57] pointing to dissatisfactory 

outcomes, most likely lack of cognitive improvement in Phase II clinical trials. 

 

4. Novel functions for PREP beyond hydrolytic actions 

 

4.1. Protein-protein interactions 

After termination of PREP and cognition enhancing/AD related clinical trials, more focus has been 

directed at PREP non-enzymatic functions. It was shown in vitro in cell-free conditions that PREP co-

incubation with aSyn induced aggregation of this PD-related protein [58]. The effect was reversed by 

catalytical PREP inhibition but was not related to the ability of PREP to hydrolyze aSyn as this protein 

is much too large (14 kDa) to be processed by PREP [58]. A year later, PREP interaction with growth 

associated protein 43 (GAP-43) was demonstrated (Table. 1) [59]. Of note was the observation that this 

association was independent of PREP enzymatic activity as catalytically inactive PREP mutant with 

S554A (S554A-PREP) substitution was able to form a protein-protein interaction with GAP-43. 

Moreover, it was shown that altered growth cone dynamics of PREP knockout (PREPko) neuronal cells 
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could be rescued with either wild type or mutant S554A-PREP [59], further supporting the mechanism-

of-action for PREP beyond catalytic activity. The third protein-protein interaction partner of PREP 

currently published is glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Table. 1) [60]. The authors 

postulated that this interaction is important for GAPDH nuclear translocation upon cell cycle arrest and 

apoptotic cell death in NB-1 neuroblastoma cells. Additionally, the effect could be blocked by PREP 

inhibition with SUAM-14746 or after PREP depletion [60]. In an earlier work, Z-pro-prolinal inhibition 

of PREP abolished GAPDH translocation in monkey fibroblast CV1-P cells but not in neuroblastoma 

SH-SY5Y cells [61]. Additionally, a yeast-two-hybrid and colocalization study suggested PREP 

interaction with tubulin and based on this, proposed role in cellular trafficking and axonal transport has 

as one of the functions for PREP [51]. However, this has not been verified in vitro or functional studies. 

Interestingly, we showed PREP colocalization with aSyn in PD brains as well as with Aβ plaques and 

tau protein in AD patient post mortem brains, supporting the in vitro data of PREP interaction with aSyn. 

Additionally, increased immunostaining was seen in the astrocytes of AD patients [46]. Currently, known 

PREP protein interaction and non-enzymatic functions point to a more global PREP role in cellular 

signaling. A recent review has proposed that substrate binding and enzymatic activity could be secondary 

processes where PREP primarily functions through peptide gated direct interactions [62]. Whether the 

substrate binding is necessary or not, is still unclear. However, it can be speculated that the varied set of 

non-hydrolytic functions, such as protein-protein interactions, cellular pathway activation, and induction 

of cellular inflammation stem from unknown PREP mechanisms. 

 

4.2 PREP and neuroinflammation 

Although PREP is not visible in glial cells in the intact rodent brain, microglial activation by 

immunoglobulin G increased PREP expression [68]. A recent study has reported changes in the PREP 
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protein activity after microglial stimulation with lipopolysaccharides (LPS) and IFNγ in the absence or 

presence of neuronal cells. Notably, intracellular PREP activity decreased while PREP activity and 

protein in the extracellular space was increased. PREP inhibition reduced TNFα levels and exhibited 

neuroprotection in the KYP-2047 treatment groups [69]. Interestingly, it has been demonstrated that upon 

stimulation of TPH-1 monocytes by a combination of IFNγ and either LPS or aSyn, enzymatic activity 

of PREP is upregulated. This increase in PREP activity could not be achieved by TPH-1 cell stimulation 

by only one of the inflammatory stimulators. Moreover, microglial supernatant toxicity stimulated by 

IFNγ and aSyn in SH-SY5Y cells could be abolished by PREP inhibition [70]. This report is in line with 

a study where PREP knockout animals were shown to not respond to LPS-induced microglial activation 

[65] pointing to direct PREP involvement in neuroinflammation. Moreover, systemic inflammation in 

liver failure rat model (portacaval shunt) increased PREP expression, activity, and colocalization of 

PREP with astrocytes in several brain areas [71]. 

 

4.3 PREP, PREP inhibition and aSyn aggregation in cells and in vivo 

 

4.3.1 PREP interacts with aSyn to increase its aggregation 

Our group has done additional experiments on PREP and aSyn interactions, and we have confirmed 

PREP-aSyn interaction in vitro. Notably, we have shown that PREP increased aSyn dimerization by 

direct protein-protein interaction [64]. This effect is independent of PREP activity but only treatment of 

catalytically active PREP with a PREP inhibitor, KYP-2047, reduced aSyn dimerization while the 

S554A-PREP-mediated aSyn dimerization process remained unchanged. Earlier results (Myöhänen et 

al. 2012) suggested that PREP inhibition could reduce the interaction between PREP and aSyn but 

contrary to assumption, after KYP-2047 treatment, PREP-aSyn interaction increased pointing to the 
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ability of KYP-2047-PREP to stabilize aSyn or bind aSyn in a way that restricts aSyn-aSyn interactions 

[64]. PREP in cells is thought to exist in different conformations [17], this can be seen on native gel 

electrophoresis where native PREP or S554A-PREP separates in to three distinctive bands believed to 

represent open and closed conformer and oligomer [64]. Whether oligomers exist in physiological 

conditions is not known. After PREP was incubated with an inhibitor, KYP-2047, only closed conformer 

was seen on the native gel, this effect was not reproduced with S554A-PREP [64]. Consequently, shift 

in the equilibrium between different PREP conformations could represent the beneficial effects that 

PREP exert on aSyn aggregation [64]. It will be important to establish if different PREP inhibitors affect 

PREP’s non-catalytical functions differently and if this effect is due to changes in PREP conformation. 

It could be speculated that the PREP inhibitor’s potency on enzymatic activity (IC50) is not the defining 

factor in the protein-protein interaction process. 

 

4.3.2 PREP inhibition enhances aSyn clearance by inducing autophagy 

It has been demonstrated that PREP inhibition reduces aSyn burden in cells and in vivo [72, 73]. This 

effect could not be solely explained by decreased aSyn aggregation, and we found that PREP inhibition 

not only reduces aSyn aggregation but also induces autophagy via class III phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K-III) beclin1 pathway. This induction boosts autophagic machinery of the 

cell that in turn removes excessive aSyn from the cells [72] and also overcomes the effect of proteasomal 

inhibitor, lactacystin, on aSyn aggregation in a cell culture model [74]. However, the process is most 

likely more complex, as in the adeno-associated virus (AAV) aSyn overexpression mouse PD model 

where aSyn overexpression and subsequent chronic PREP inhibition had little effect on total aSyn 

immunoreactivity. It is likely that the aSyn load produced by AAV was high enough to not allow cellular 

protein clearance machinery to entirely degrade excess aSyn. However, PREP inhibition still had a 



14 
 

beneficial effect on mouse motor behavior, which was associated with decrease in soluble higher aSyn 

oligomer counts in the PREP inhibitor treated animals [75]. Similarly, we had shown that soluble higher 

aSyn oligomers are reduced in aSyn overexpressing cells after PREP inhibition [73]. Proteinase K (PK)-

resistant aSyn inclusions were not decreased as efficiently as soluble forms after PREP inhibition in the 

mouse AAV aSyn overexpression model [75], and this suggests that it might be related to the inability 

of the protein degradation pathway to degrade PK-resistant aSyn inclusions after they have been formed. 

There are no reports about the ability of autophagy to degrade insoluble aSyn aggregates in vivo, and it 

is has been shown that preformed fibrils that generally are insoluble are not degraded by autophagy [76]. 

Whether Lewy bodies and higher order aSyn aggregates are the main cause of the neuronal toxicity is 

highly debated. Large aggregates could act as a protective mechanism that sequester soluble toxic 

oligomer species [77-79]. Moreover, there are reports showing that soluble oligomers rich in β-structure 

are highly toxic species [80], and this supports the use of PREP inhibition to reduce aSyn toxicity in 

synucleinopathies.  

 

4.3.3 PREP gives raise to soluble aSyn aggregates in cells and in vivo 

To further support the role of PREP for aSyn toxicity, we have recently shown that PREPko animals are 

less sensitive to aSyn overexpression caused by AAV-aSyn injection [81]. In the study, PREP 

overexpression in tandem with aSyn resulted in a more pronounced drop in locomotor activity in aSyn 

and PREP-injected animals. Cell culture data supported the finding of PREP potentiating aSyn toxicity, 

as aSyn and PREP co-transfected groups exhibited the highest cell death [81]. Additionally, PREPko 

mice that had PREP restored in their nigrostriatal tract did not exhibit any toxicity in another study [67]. 

Interestingly, PK-resistant aSyn oligomers were significantly reduced in PREPko mice injected with 

AAV-aSyn and PREP when compared to only the AAV-aSyn-injected group, and the same observation 
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held true for S129 phosphorylated aSyn (aSyn p-S129) [81]. This could indicate that PREPko mice 

injected with aSyn and PREP AAVs have more soluble oligomer aSyn species that are thought to be 

more toxic [26, 82], and this is supported by our earlier findings of the PREP inhibitor in the AAV-aSyn 

mouse model (see above) [75]. Moreover, reduced aSyn p-S129 levels also corroborated this observation 

due to the fact that most of the aSyn in, for example, Lewy bodies are phosphorylated. However, whether 

p-S129 aSyn is an indicator of toxicity is not completely understood although it is widely used as a 

marker for aSyn toxicity [83]. We wanted to further characterize the impact of PREP on aSyn and did 

experiments with PREPko cells that similarly indicated that lack of PREP could ameliorate aSyn toxicity 

due to increased autophagic flux (Svarcbahs et al. 2018), thus supporting earlier PREP inhibitor findings 

on autophagy [72]. 

 

4.4 PREP and the striatal dopaminergic system 

In addition to other neuroprotective mechanisms, PREP inhibitors are able to modulate nigrostriatal 

dopamine and the dopamine transporter. Jalkanen et al 2012 [84] showed that PREP inhibitors, KYP-

2047 and JTP-4819, reduce striatal extracellular dopamine in the rat brain and in our study KYP-2047 

increased tissue concentration of dopamine in the striatum of A30P point-mutated transgenic mice [72]. 

However, KYP-2047 did not have significant effects on striatal extracellular dopamine or tissue 

concentration of dopamine in wild-type mice or AAV-aSyn injected mice, but inhibitor treatment 

elevated striatal extracellular concentration of dopamine metabolites in wild-type mice [67, 75]. We have 

also shown that PREP participates in regulation of the dopamine transporter in mice [67, 72]. Lack of 

PREP increases dopamine transporter phosphorylation and overexpression of PREP decreases it in the 

mouse striatum, but KYP-2047 treatment did not have an effect on dopamine transporter function [67]. 

Phosphorylated transporters are internalized which decreases them on the plasma membrane and reduces 



16 
 

re-uptake of dopamine leading to an elevated extracellular dopamine concentration [85, 86]. PREP has a 

significant role in regulating the nigrostriatal dopaminergic system but KYP-2047 has a limited beneficial 

effect on dopaminergic cells in mouse models of PD (Julku et al. 2018).  

 

5. Could PREP be a target for drug therapy in several neurodegenerative diseases? 

Our studies show that PREP interacts directly with aSyn and stabilizes a structure that is more prone to 

aggregate (Fig. 2) [64]. Interestingly, PREP does not appear in PD GWAS studies and its activity is more 

likely to be reduced than increased in PD post mortem brain samples and patient CSF (references), 

indicating that it is probably acting more as a catalyst than a cause for aSyn aggregation and this is 

supported by our results in cells and in vivo. Keeping in mind that only a small portion of all PD cases 

have a genetic background, PREP could be one of the factors behind sporadic PD. However, although 

not being crucial for aSyn aggregation, once aSyn concentration is increased or some other incident 

initiates the aSyn aggregation process, PREP can enhance the aggregation rate [58, 64]. In cells and in 

vivo, the presence of PREP leads to formation of soluble aSyn oligomers that increases aSyn toxicity 

[81]. Although our early studies indicated that PREP inhibition could abolish this interaction [73], more 

detailed analysis showed that the PREP inhibitor changes and increases the interaction with aSyn, very 

likely stabilizing non-aggregating forms of aSyn, leading in part to significantly reduced oligomeric 

aSyn, improved cellular functions, and alleviated motor behavioral dysfunction in the mouse model. 

Interestingly, although PREP inhibitors were studied widely in AD and memory models, connection 

between PREP and Tau aggregation did not receive much attention. Only later studies revealed that PREP 

is localized in microtubules similar to Tau [51], and four-hour inhibition of PREP in rat CNS (S 17092 

inhibitor) elevated levels of a small Tau peptide sequence [87]. Finally, our colocalization study showed 

similar spatial association between PREP and Tau in AD post mortem brain as with aSyn in PD post 
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mortem samples [46]. Therefore, there is a possibility that PREP could be involved in the Tau aggregation 

process, but this particular hypothesis needs to be verified. 

 

Figure 2. Known and putative PREP related pathways in neurodegeneration, and targets for PREP 
inhibitors. (1) PREP enhances aggregation and formation of soluble aSyn oligomers via direct interaction, 
and colocalization analysis indicates that this may also occur with Tau. PREP inhibitor modifies this 
interaction and stabilizes the less aggregation-prone conformation/conformer of aSyn. (2) PREP is a 
negative regulator for autophagy, and PREP inhibitor can enhance degradation of protein aggregates by 
enhancing autophagy. This can be beneficial in several neurodegenerative diseases. (3) PREP inhibitor 
treatment reduced Aβ fragments, and PREP colocalized with Aβ in AD post mortem brain. Therefore, it 
is a tempting possibility that PREP inhibitors could also modify intracellular Aβ by regulating the 
interaction of Aβ and PREP, and by enhancing their clearance via autophagy. (4) Increased ROS 
production is a common feature in several neurodegenerative diseases, and in a cellular model, PREP 
inhibition can reduce production of ROS. However, the role of PREP in oxidative stress and ROS 
production remains to be further studied. (5) Aβ and aSyn oligomers can activate microglia, and 
activation increases PREP expression in microglia and leads to secretion of PREP in the extracellular 
space. This is potentially toxic for neurons, and PREP inhibitors can reduce extracellular PREP toxicity. 
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Dysfunction in the protein degradation machinery, ubiquitin-proteasomal system (UPS), or autophagy-

lysosomal pathway (ALP) has been implicated as one of the causes in most of the proteinopathies and 

has a distinctive role in the processing and aggregation of aSyn and Tau. Additionally, several gene 

mutations associated with AD (e.g. PICALM, PSEN1) and PD (e.g. SNCA, GBA) impair autophagy [88] 

and protein processing. Decreased levels of beclin1, an important regulator for autophagosome 

formation, have been measured in aging and AD [89]. Activation of these systems has been studied as a 

potential drug target that would alleviate protein aggregate accumulation [90]. It is not surprising that 

several studies have reported reduced protein accumulation and improved cognitive and motor behavior 

in models of AD, PD, Huntington’s disease, and ALS after treatment by an autophagy inducer, such as 

rapamycin, or by increasing autophagy proteins like beclin1 (see comprehensive review by Galluzzi et 

al. 2017)[91]. Interestingly, autophagy induction e.g. by lithium and nilotinib, also lowers the levels of 

aggregation-prone Aβ 1-42 in the brain of AD animal models [92, 93], indicating that their impact is not 

only limited to intracellular aggregates. It is possible that this was the mechanism behind the decrease of 

Aβ-fragment levels in senescence mouse model after PREP inhibitor treatment as reported by Kato et al. 

(1997) [39]. However, most autophagy inducers, including rapamycin, were not initially developed as 

autophagy inducers and have either an unclear mechanism-of-action or side effects that limit their clinical 

use in neurodegeneration. Additionally, autophagy regulates processes leading to apoptosis and safe 

regulation of these processes has been a challenge [91]. Our results show that PREP inhibition increases 

autophagy and elevates the levels of beclin1 [63] that has been reported to be depleted e.g. in AD, and 

there are no reports of PREP inhibition toxicity in preclinical and clinical trials [54-56]. Therefore, this 

could increase the usability of PREP inhibitors outside PD and they could be used generally in 

neurodegenerative diseases. 
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Oxidative stress is one of the common toxic features in neurodegeneration. Mitochondrial damage and 

production of reactive oxygen species (ROS) increase the aggregation of aggregation-prone proteins, but 

oligomers and other aggregation intermediates can also damage mitochondria to increase ROS 

production and oxidative stress. We did observe reduced ROS production by a PREP inhibitor in 

rotenone-treated SH-SY5Y cells overexpressing aSyn but this was more related to decreased aSyn 

oligomers [94]. However, our recent paper [81] revealed that lack of PREP completely abolishes ROS 

production and an increase in stress response proteins after oxidative stress, therefore it could be 

hypothesized that PREP is a factor in cellular redox regulation. Puttonen et al. showed in 2006 that a 

PREP inhibitor, Z-Pro-Prolinal, reduced oxidative stress in CV1-P cells and this impact was connected 

to GAPDH translocation [61]. However, GAPDH is a downstream target for ROS, and thus this cannot 

explain why PREP deletion leads to a significantly reduced stress response in cells. If PREP inhibitors 

could combat oxidative stress by reducing ROS production, it would further support the multi-target 

character of PREP inhibition. However, PREPko cells showed reduced 20S proteasomal activity at basal 

conditions but this can be a compensatory mechanism for increased autophagic flux since in transgenic 

aSyn mice PREP inhibition was shown to restore 20S proteasomal activity to the wild-type mice levels 

[72, 81]. 

 

6. Future directions 

As shown above, PREP is involved in several common mechanisms of toxicity related to neuronal death 

in neurodegenerative diseases. However, apart from aSyn, impact of PREP and its inhibition on other 

aggregation-prone proteins related to neurodegeneration has not been studied in detail, and requires 

further studies. Additionally, discrepancy between studies using different PREP inhibitors in models of 

neurodegeneration or memory loss (reviewed in Männistö et al. 2007 [62]), has never been carefully 

studied and this could reveal critical information on the mechanism of action of PREP inhibitors. In this 
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review, we have mainly focused on the role of PREP in neurodegeneration. A simple cleavage of peptides 

cannot explain most of the actions associated to PREP. However, PREP inhibition has a potential, for 

example, to reduce cancer proliferation rate. Namely, neuroblastoma, gastric cancer, and human breast 

cancer cell lines have been shown to be sensitive to PREP inhibition. The effects arise from the G0/G1 

arrest but the mechanism has remained unclear [95, 96]. Moreover, different potent PREP inhibitors 

exhibit varied potency on the non-hydrolytic PREP functions, such as modulation of ROS production, 

cell differentiation, and inhibition of cancer cell proliferation, thus pointing on fine changes in PREP 

structure induced by these inhibitors. If this holds true, the possibility to develop inhibitors that could be 

specifically tailored for non-enzymatic PREP activities could be an exciting prospect for PREP inhibitor 

development for neurodegenerative disorders. However, this warrants firstly the identification of PREP 

structure (or structures) responsible for these interactions and identification of PREP inhibitor scaffolds 

and their binding sites in PREP that modify this structure and PREP conformation. There is still work 

ahead with PREP but its potential in drug discovery should not be forgotten.  
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