5 research outputs found

    A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex

    No full text
    Immediately prior to invasion Toxoplasma gondii tachyzoites release a large number of micronemal proteins (TgMICs) that participate in host cell attachment and penetration. The TgMIC4-MIC1-MIC6 complex was the first to be identified in T. gondii and has been recently shown to be critical in invasion. This study establishes that the N-terminal thrombospondin type I repeat-like domains (TSR1-like) from TgMIC1 function as an independent adhesin as well as promoting association with TgMIC4. Using the newly solved three-dimensional structure of the C-terminal domain of TgMIC1 we have identified a novel Galectin-like fold that does not possess carbohydrate binding properties and redefines the architecture of TgMIC1. Instead, the TgMIC1 Galectin-like domain interacts and stabilizes TgMIC6, which provides the basis for a highly specific quality control mechanism for successful exit from the early secretory compartments and for subsequent trafficking of the complex to the micronemes

    A family of aspartic proteases and a novel, dynamic and cell-cycle-dependent protease localization in the secretory pathway of Toxoplasma gondii

    No full text
    Aspartic proteases are important virulence factors in pathogens like HIV, Candida albicans or Plasmodium falciparum. We report here the identification of seven putative aspartic proteases, TgASP1 to TgASP7, in the apicomplexan parasite Toxoplasma gondii. Bioinformatic and phylogenetic analysis of the TgASPs and other aspartic proteases from related Apicomplexa suggests the existence of five distinct groups of aspartic proteases with different evolutionary lineages. The members of each group share predicted biological features that validate the phylogeny. TgASP1 is expressed in tachyzoites, the rapidly dividing asexual stage of T.gondii. We present the proteolytic maturation and subcellular localization of this protease through the cell cycle. TgASP1 shows a novel punctate localization associated with the secretory system in non-dividing cells, and relocalizes dramatically and unambiguously to the nascent inner membrane complex of daughter cells at replication, before coalescing again at the end of division
    corecore