3 research outputs found

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria

    No full text
    A PCR protocol for the detection of sulfur-oxidizing bacteria based on soxB genes that are essential for thiosulfate oxidation by sulfur-oxidizing bacteria of various phylogenetic groups which use the 'Paracoccus sulfur oxidation' pathway was developed. Five degenerate primers were used to specifically amplify fragments of soxB genes from different sulfur-oxidizing bacteria previously shown to oxidize thiosulfate. The PCR yielded a soxB fragment of approximately 1000 bp from most of the bacteria. Amino acid and nucleotide sequences of soxB from reference strains as well as from new isolates and environmental DNA from a hydrothermal vent habitat in the North Fiji Basin were compared and used to infer relationships of soxB between sulfur-oxidizing bacteria belonging to various 16S rDNA-based phylogenetic groups. Major phylogenetic lines derived from 16S rDNA were confirmed by soxB phylogeny. Thiosulfate-oxidizing green sulfur bacteria formed a coherent group by their soxB sequences. Likewise, clearly separated branches demonstrated the distant relationship of representatives of alpha-, beta-, and gamma-Proteobacteria including representative species of the former genus Thiobacillus (now Halothiobacillus - gamma-Proteobacteria, Thiobacillus - beta-Proteobacteria and Starkeya - alpha-Proteobacteria). This general picture emerged although apparent evidence for lateral transfer of the soxB gene is indicated and comparison of soxB phylogeny and 16S rDNA phylogeny points to the significance of this gene transfer in hydrothermal vent bacterial communities of the North Fiji Basin

    The anammoxosome: an intracytoplasmic compartment in anammox bacteria

    No full text
    Contains fulltext : 60180.pdf (publisher's version ) (Closed access)Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single ladderane lipid-containing membrane. The anammox bacteria, first found in a wastewater treatment plant in The Netherlands, have the potential to remove ammonium from wastewater without the addition of organic carbon. Very recently anammox bacteria were also discovered in the Black Sea where they are responsible for 30-50% of the nitrogen consumption. This review will introduce different forms of intracytoplasmic membrane systems found in prokaryotes and discuss the compartmentalization in anammox bacteria and its possible functional relation to catabolism and energy transduction. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved
    corecore