15 research outputs found

    Current Glacier Area in the Pyrenees: An Updated Assessment 2016

    Get PDF
    Producción CientíficaLos estudios de superficie glaciar en los Pirineos han informado de más de 2000 ha en 1850, 806,5 ha en la década de 1980 y 310,33 ha en 2008. En este trabajo hemos llevado a cabo una estimación actualizada (2016) de la superficie de los glaciares actuales en los Pirineos, a partir de imágenes satelitales contrastadas con observaciones “in situ” de los glaciares más representativos. Nuestros resultados dan una superficie glaciar de 242,06 ha para el año 2016. Esto implica una reducción del 88,25% desde 1850 y una rápida disminución desde la década de 1980, lo que confirma el acelerado declive durante el final del siglo XX y la primera década del siglo XXI

    Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain

    Get PDF
    [EN]Unmanned Aerial Vehicles (UAVs) offer great flexibility in acquiring images in inaccessible study areas, which are then processed with stereo-matching techniques through Structure-from-Motion (SfM) algorithms. This procedure allows generating high spatial resolution 3D point clouds. The high accuracy of these 3D models allows the production of detailed snow depth distribution maps through the comparison of point clouds from different dates. In this way, UAVs allow monitoring of remote areas that were not achievable previously. The large number of works evaluating this novel technique has not, to date, conducted a systematic evaluation of concurrent snowpack observations with different UAV devices. Taking into account this, and also bearing in mind that potential users of this technique may be interested in exploiting ready-to-use commercial devices, we conducted an evaluation of the snow depth distribution maps with different commercial UAVs. During the 2018-19 snow season, two multi-rotors (Parrot Anafi and DJI Mavic Pro2) and one fixed-wing device (SenseFly eBee plus) were used on three different dates over a small test area (5 ha) within Izas Experimental Catchment in the Central Pyrenees. Simultaneously, snowpack distribution was retrieved with a Terrestrial Laser Scanner (TLS, RIEGL LPM-321) and was considered as ground truth. Three different georeferencing methods (Ground Control Points, ICP algorithm over snow-free areas and RTK-GPS positioning) were tested, showing equivalent performances under optimum illumination conditions. Additionally, for the three acquisition dates, both multi-rotors were flown at two distinct altitudes (50 and 75 m) to evaluate impact on the obtained snow depth maps. The evaluation with the TLS showed an equivalent performance of the two multi-rotors, with mean RMSE below 0.23 m and maximum volume deviations of less than 5%. Flying altitudes did not show significant differences in the obtained maps. These results were obtained under contrasted snow surface characteristics. This study reveals that under good illumination conditions and in relatively small areas, affordable commercial UAVs provide reliable estimations of snow distribution compared to more sophisticated and expensive close-range remote sensing techniques. Results obtained under overcast skies were poor, demonstrating that UAV observations require clear-sky conditions and acquisitions around noon to guarantee a homogenous illumination of the study area.This work was supported by the research projects of the Spanish Ministry of Economy and Competitiveness projects "El papel de la nieve en la hidrologia de la peninsula iberica y su respuesta a procesos de cambio global-CGL2017-82216-R" and the JPI-Climate co-funded call of the European Commission and INDECIS and CROSSDRO which are part of ERA4CS, and ERA-NET. Authors do not have any conflict of interest.). J. Revuelto is supported by a "Juan de la Cierva Incorporacion" postdoctoral fellow of the Spanish Ministry of Science, Innovation and Universities (Grant IJC2018-036260-I). I. Vidaller is supported by the Grant FPU18/04978 and is studying in the PhD program in the University of Zaragoza (Earth Science Department)

    Landforms of the lower Hushe Valley (Central Karakoram, Pakistan)

    Get PDF
    This paper presents a new geomorphological map for the lower Hushe Valley (below 3400 m asl), located to the SE of the Central Karakoram in Baltistan (North Pakistan). Fieldwork and remote sensing were combined to improve understanding of the most recent surface landforms to produce a 1:50,000 scale map. Thirteen landform types associated with glacial, fluvial, gravitational and mass wasting processes were identified and mapped. Particular emphasis was made on currently dynamic processes that could pose a threat to the population. The distribution of the landforms on the valley (reworked tills, alluvial fans, rockfalls, among others) differs between the eastern and the western hillslopes, and from north to south, mainly due to bedrock types, location of geological structures and distribution of lateral tributaries. This map is the first and necessary step towards a deep assessment on geological risk related to external processes in the area.This research was funded by the Basque Government (Eusko Jaurlaritza) through the Humanitarian Action 2018 fund (PRE2018EH/0004) and the Consolidated Research Group IT1029-16. We also thank the University of the Basque Country UPV/EHU for the suppor

    2030 Agendako helburuetatik lurra-ura hartzera

    Get PDF
    The 2030 Agenda includes objectives in three dimensions (economic, social and environmental). To these three, we must add the territory where the action plans are implemented. Hence, as researchers working in hydrology we must generate knowledge towards the resilience of dynamic territories combining Water and Land. Thus, this article analyses the need to establish a basin-perspective in water management instead of the usual river-perspective, considering the basin as the basic bio-physical unit for territorial planning. Climate change mitigation and adaptation policies converge in the basin, facilitating the identification of synergies and trade-offs between both strategies. In fact, global mitigation policies focus, largely, on carbon sequestration through reforestation, neglecting its side-effects on adaptation. The hydrological functions of the territory affect the quantity, quality, location and timing of water, by accumulating, moving and transforming it. Therefore, accepting this water regulatory function would imply a change in the way of understanding the management of water resources and an improvement in the integration of hydrological services in the territorial planning. For this purpose, local knowledge and knowledge on trade-offs and synergies between different objectives are needed. In this era of uncertainties, we should focus our main research strategies towards minimization of uncertainties in order to properly manage them and make knowledge-informed decisions, thus, changing the management paradigm. We need, therefore, socio-political will to redirect territorial dynamics, incorporating a development model adapted to local ecosystem services limitations, placing Land and Water in the centre of the territory, anywhere in the world; Garapen Iraunkorrerako 2030 Agendaren hiru dimentsioei (ekonomikoa, soziala eta ingurumenarena) lurraldearena gehitu behar zaie, ekintza-planak gauzatzeko ezinbesteko ingurune fisikoa baita. Hortik dator hidrologiatik ari garen ikertzaileok iraunkortasunari egin diezaiokegun ekarpena: ura eta lurra uztartuta lurralde dinamikoak erresiliente egiteko bidean ezagutza sortzea, erabakietan eragiteko. Iraunkortasuna zutabe hartuta, uraren kudeaketan ohikoa den ibai-ikuspegia aldatu eta arro-ikuspegia ezarri beharra dugu, eta ibai-arroa (ura + lurraldea) lurralde-antolamenduaren oinarrizko unitate biofisiko bihurtu. Hala, klima-aldaketaren aurrean ezartzen diren arintze- eta egokitze-politiken bateragune bihurtzen da ibai-arroa, bi estrategia horien arteko sinergiak eta helburu-gatazkak identifikatzea errazten duen heinean. Izan ere, klima-aldaketarekin lotutako mundu mailako arintze-politiken oinarriak karbonoa bahitzea eta horri lotuta lurraldea basotzea dira neurri handi batean, basotzeak klima-aldaketara egokitzeko ekar ditzakeen albo-kalteak kontuan izan gabe. Lurraldearen funtzio hidrologikoek eragina dute uraren kantitatean, kalitatean, kokapenean eta denboran, zeren eta ura metatzen, mugitzen etaeraldatzen baitute. Beraz, lurraldeak uraren erregulatzaile gisa duen funtzioa onartuz gero, baliabide hidrologikoen kudeaketa ulertzeko modua aldatuko litzateke, baita egokitzera bidean lurraldearen kudeaketan zerbitzu hidrologikoak barneratzea erraztuko ere. Horretarako, beharrezkoa da tokiko eskalari lotutako ezagutzen eta helburuen arteko gatazkak eta sinergiak zein diren jakitea. Alde horretatik, bizi dugun ziurgabetasun-aroan, auzi horiek argitzera bideratu behar genituzke ikerketa-bide nagusiak, haiek egoki kudeatzeko eta ezagutzak informatutako erabakiak hartzeko, ohiko inertziak gaindituta, kudeaketa-paradigma aldatuta. Hortaz, lurralde-dinamikak birbideratzeko borondate soziopolitikoa behar da, eta naturak lekuan-lekuan eskaintzen dituen zerbitzu ekosistemikoen mugetara egokituriko garapen-eredu bat barneratu, lurra eta ura lurraldearen ardatzean jarrita, munduko edozein herrialdetan

    Toward an Ice-Free Mountain Range: Demise of Pyrenean Glaciers During 2011-2020

    Get PDF
    [EN]Pyrenean glaciers are the largest in southern Europe. Their survival is threatened by climate change, highlighting the significance of their study. This research presents an assessment of changes in the glacierized area and thickness of Pyrenean glaciers from 2011 to 2020, using high-resolution optical satellite, airborne lidar and UAV images. The total glacierized area has shrunk by 23.2% and thickness has decreased on average by 6.3 m. These two variables show no correlation for individual glaciers. Although climatic conditions do not vary much among glaciers, their evolution was heterogeneous during the study period. The smaller glaciers (10 ha) have a more homogeneous response. This can be attributed to the generally larger influence of local topography on the response of the smaller Pyrenean glaciers. There is no sign of slowdown in glacier shrinkage respect to previous decades.This work was supported by the Interreg-POCTEFA project OPCC ADAPYR and Spanish Ministry of Economy and Competitiveness project "CGL2017-82216-R." J. Revuelto is supported by the Grant IJC2018-036260-I. I. Vidaller is supported by the Grant FPU18/04978 and is studying the PhD program in the University of Zaragoza. E. Izagirre and I. Rico are supported by the Grant PPGI19/02 (UPV/EHU) and the Consolidated Research Group IT1029-16 (Basque Country Government). E. Berthier acknowledges support from the French Space Agency (CNES)

    Progress and challenges in glacial lake outburst flood research (2017–2021):a research community perspective

    Get PDF
    Glacial lake outburst floods (GLOFs) are among the most concerning consequences of retreating glaciers in mountain ranges worldwide. GLOFs have attracted significant attention amongst scientists and practitioners in the past 2 decades, with particular interest in the physical drivers and mechanisms of GLOF hazard and in socioeconomic and other human-related developments that affect vulnerabilities to GLOF events. This increased research focus on GLOFs is reflected in the gradually increasing number of papers published annually. This study offers an overview of recent GLOF research by analysing 594 peer-reviewed GLOF studies published between 2017 and 2021 (Web of Science and Scopus databases), reviewing the content and geographical focus as well as other characteristics of GLOF studies. This review is complemented with perspectives from the first GLOF conference (7-9 July 2021, online) where a global GLOF research community of major mountain regions gathered to discuss the current state of the art of integrated GLOF research. Therefore, representatives from 17 countries identified and elaborated trends and challenges and proposed possible ways forward to navigate future GLOF research, in four thematic areas: (i) understanding GLOFs - timing and processes; (ii) modelling GLOFs and GLOF process chains; (iii) GLOF risk management, prevention and warning; and (iv) human dimensions of GLOFs and GLOF attribution to climate change.Fil: Emmer, Adam. University of Graz; AustriaFil: Allen, Simon K.. Universitat Zurich; Suiza. Universidad de Ginebra; SuizaFil: Carey, Mark. University of Oregon; Estados UnidosFil: Frey, Holger. Universitat Zurich; SuizaFil: Huggel, Christian. Universitat Zurich; SuizaFil: Korup, Oliver. Universitat Potsdam; AlemaniaFil: Mergili, Martin. University of Graz; AustriaFil: Sattar, Ashim. Universitat Zurich; SuizaFil: Veh, Georg. Universitat Potsdam; AlemaniaFil: Chen, Thomas Y.. Columbia University; Estados UnidosFil: Cook, Simon J.. University Of Dundee; Reino Unido. Unesco. Centre For Water Law, Policy And Science; Reino UnidoFil: Correas Gonzalez, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Das, Soumik. Jawaharlal Nehru University; IndiaFil: Diaz Moreno, Alejandro. Reynolds International Ltd; Reino UnidoFil: Drenkhan, Fabian. Pontificia Universidad Católica de Perú; PerúFil: Fischer, Melanie. Universitat Potsdam; AlemaniaFil: Immerzeel, Walter W.. Utrecht University; Países BajosFil: Izagirre, Eñaut. Universidad del País Vasco; EspañaFil: Joshi, Ramesh Chandra. Kumaun University India; IndiaFil: Kougkoulos, Ioannis. American College Of Greece; GreciaFil: Kuyakanon Knapp, Riamsara. University of Oslo; Noruega. University of Cambridge; Estados UnidosFil: Li, Dongfeng. National University Of Singapore; SingapurFil: Majeed, Ulfat. University Of Kashmir; IndiaFil: Matti, Stephanie. Haskoli Islands; IslandiaFil: Moulton, Holly. University of Oregon; Estados UnidosFil: Nick, Faezeh. Utrecht University; Países BajosFil: Piroton, Valentine. Université de Liège; BélgicaFil: Rashid, Irfan. University Of Kashmir; IndiaFil: Reza, Masoom. Kumaun University India; IndiaFil: Ribeiro De Figueiredo, Anderson. Universidade Federal do Rio Grande do Sul; BrasilFil: Riveros, Christian. Instituto Nacional de Investigación En Glaciares y Ecosistemas de Montaña; PerúFil: Shrestha, Finu. International Centre For Integrated Mountain Development Nepal; NepalFil: Shrestha, Milan. Arizona State University; Estados UnidosFil: Steiner, Jakob. International Centre For Integrated Mountain Development Nepal; NepalFil: Walker-Crawford, Noah. Colegio Universitario de Londres; Reino UnidoFil: Wood, Joanne L.. University of Exeter; Reino UnidoFil: Yde, Jacob C.. Western Norway University Of Applied Sciences; Suiz

    Glacial geomorphology of the Marinelli and Pigafetta glaciers, Cordillera Darwin Icefield, southernmost Chile

    No full text
    This paper presents a glacial geomorphological map relating to two rapidly receding glaciers in the Cordillera Darwin Icefield. The Marinelli marine-terminating glacier and Pigafetta freshwater-terminating glacier are selected to represent different glacial regimes producing different geomorphological records under similar climatic conditions. We combine mapping from satellite and aerial imagery with fieldwork, updating limited previous mapping. The map reveals two principal glacial landform assemblages: (1) a marine-terminating system, dominated by the formation of a large arcuate terminal morainic complex, glaciolacustrine landforms (shorelines) and extended ice-contact topography in the Fiordo Marinelli area; and (2) an assemblage of sequential frontal moraine ridges and outwash plains that formed when the former land-terminating Pigafetta glacier retreated from the Bahía Ainsworth area. Finally, the map is designed as a basis for future chronological campaigns and to enable a refined reconstruction of the glacial history of these two glaciers in a climatologically significant part of the world

    Glacier and climate evolution in the Pariacacá Mountains: Peru

    No full text
    Glaciers in Peru play a major role in water availability and they also have direct implications on natural hazards such as glacial lake outburst floods (GLOFs) and/or ice avalanches, which have caused a high number of fatalities and damage to infrastructure in the last decades. Despite a noticeable effort to quantify and understand the shrinking and thawing of glaciers in Peru, there are still regions where detailed assessment is still missing. In this work, a set of remote sensing images were used to map, for the first time, the evolution of the glaciated area (from 1970 to 2018) in the Pariacacá Mountains (11º5’ S, 76º0’ W) in the Cordillera Central of Peru. The results evidenced a marked decrease of the glaciated surface, with 55.3% shrinkage since 1970 and 40% since 1987. Faster glacier retreat occurred between 1985 and the end of the 1990s, and this period was followed by a significant slowdown in shrinking rates. The differential loss of ice, depending on elevation and exposure to incoming radiation, has led to changes in spatial distribution of the glaciers. Currently, they have almost completely thawed below 5000 m a.s.l. They are mostly located in south- to west-facing aspects. Ice melting in the last decades has even affected the summit areas. Finally, the development of ablation hollows has been identified as an important driver of glacier thaw. These features are formed mainly in gentle slopes and highly irradiated zones between 5000 and 5400 m a.s.l.Los glaciares en Perú juegan un papel fundamental en la disponibilidad de agua y también poseen claras implicaciones en la ocurrencia de riesgos naturales como desbordamientos de lagos (GLOFs) y/o avalanchas de hielo que han causado un gran número de víctimas y daños a infraestructuras en las últimas décadas. A pesar del gran esfuerzo que se ha realizado para cuantificar y comprender el retroceso de los glaciares en Perú, aún existen regiones donde se carece de un estudio detallado. En este trabajo, se utilizan imágenes de satélite para cartografiar por primera vez la evolución de la superficie cubierta por glaciares (durante el periodo 1970-2018) en las montañas de Pariacacá (11º5’ S, 76º0’ W) en la Cordillera Central de Perú. Los resultados evidencian un marcado retroceso glaciar, afectando al 55.3% desde 1970 y al 40% desde 1987. El periodo de mayor retroceso sucedió entre 1985 y el final de los años 90, periodo seguido por una ralentización en los ratios de fusión. Las diferencias en desaparición de hielo según altura y orientación han llevado a claros cambios en la distribución espacial de los glaciares. Actualmente, se encuentran mayoritariamente en caras sur y este. La desaparición de hielo ha llegado a afectar en los últimos años a los sectores cimeros. Finalmente, también se ha analizado la evolución de grandes depresiones de fusión sobre los glaciares que han sido identificados como un elemento significativo para acelerar la degradación de los glaciares. Estas formas aparecen fundamentalmente en zonas con elevada radiación, entre los 5000 y 5400 m s.n.m
    corecore