21 research outputs found

    The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.Peer Reviewe

    Real-time imaging of glutamate transients in the extracellular space of acute human brain slices using a single-wavelength glutamate fluorescence nanosensor

    Get PDF
    Glutamate is the most important excitatory neurotransmitter in the brain. The ability to assess glutamate release and re-uptake with high spatial and temporal resolution is crucial to understand the involvement of this primary excitatory neurotransmitter in both normal brain function and different neurological disorders. Real-time imaging of glutamate transients by fluorescent nanosensors has been accomplished in rat brain slices. We performed for the first time single-wavelength glutamate nanosensor imaging in human cortical brain slices obtained from patients who underwent epilepsy surgery. The glutamate fluorescence nanosensor signals of the electrically stimulated human cortical brain slices showed steep intensity increase followed by an exponential decrease. The spatial distribution and the time course of the signal were in good agreement with the position of the stimulation electrode and the dynamics of the electrical stimulation, respectively. Pharmacological manipulation of glutamate release and reuptake was associated with corresponding changes in the glutamate fluorescence nanosensor signals. We demonstrated that the recently developed fluorescent nanosensors for glutamate allow to detect neuronal activity in acute human cortical brain slices with high spatiotemporal precision. Future application to tissue samples from different pathologies may provide new insights into pathophysiology without the limitations of an animal model

    Amyloid-β Processing in Aged S100B Transgenic Mice Is Sex Dependent

    Get PDF
    (1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses

    Interleukin-3 protects against viral pneumonia in sepsis by enhancing plasmacytoid dendritic cell recruitment into the lungs and T cell priming

    Get PDF
    Rationale Sepsis, a global health burden, is often complicated by viral infections leading to increased long-term morbidity and mortality. Interleukin-3 (IL-3) has been identified as an important mediator amplifying acute inflammation in sepsis; however, its function in the host response to viral infections during sepsis remains elusive. Objectives To investigate the role of IL-3 during viral pneumonia in sepsis. Methods We included septic patients from two different cohorts and used in vitro and in vivo assays. The obtained data were substantiated using a second model (SARS-CoV-2 infections). Measurements and main results Low plasma IL-3 levels were associated with increased herpes simplex virus (HSV) airway infections in septic patients, resulting in reduced overall survival. Likewise, Il-3-deficient septic mice were more susceptible to pulmonary HSV-1 infection and exhibited higher pulmonary inflammation than control mice. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating plasmacytoid dendritic cells (pDCs) into the airways and by enhancing pDC-mediated T cell activation upon viral stimulation. Interestingly, the ability of IL-3 to improve adaptive immunity was confirmed in patients with SARS-CoV-2 infections. Conclusion Our study identifies IL-3 as a predictive disease marker for viral reactivation in sepsis and reveals that IL-3 improves antiviral immunity by enhancing the recruitment and the function of pDCs

    Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. In a prospective multicentric study, we identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections. Specifically, low plasma IL-3 levels is associated with increased severity, viral load, and mortality during SARS-CoV-2 infections. Patients with severe COVID-19 exhibit also reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNλ levels when compared to non-severe COVID-19 patients. In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells, both, in mice and in COVID-19 negative patients exhibiting pulmonary diseases. This study identifies IL-3 as a predictive disease marker for SARS-CoV-2 infections and as a potential therapeutic target for pulmunory viral infections

    Cell-type specific interactions between Toxoplasma gondii and murine Skeletal Muscle Cells in vitro

    No full text
    Toxoplasma gondii ist einer der häufigsten intrazellulären Protozoen weltweit und ein wichtiger Krankheitserreger des Menschen. Er kommt in drei Lebensstadien vor: Sporozoiten, Tachyzoiten und Bradyzoiten. Während Sporozoiten nach sexueller Vermehrung im Endwirt (Katzenartige) und Freisetzung in die Umwelt gebildet werden, entstehen Tachyzoiten und Bradyzoiten asexuell durch Endodyogenie in Zwischenwirten wie Vögeln, Säugetieren und dem Menschen. Tachyzoiten sind schnell replizierende Parasiten, die nahezu jede nukleäre Zelle des Körpers infizieren können. Dagegen bilden die nach Differenzierung von Tachyzoiten entstehenden, weitgehend ruhenden Bradyzoiten Gewebszysten und persistieren bevorzugt in neuronalen oder muskulären Geweben der Zwischenwirte. Der Verzehr von Bradyzoiten-haltigem, rohem oder ungegartem Fleisch von T. gondii-infizierten Nutztieren ist einer der Hauptübertragungswege des Parasiten auf den Menschen und kann zum Ausbruch der Toxoplasmose-Krankheit führen. Die Toxoplasmose ist vor allem bei immunsupprimierten Patienten und erstmalig infizierten Schwangeren nach Übertragung auf den Fötus klinisch gefährlich und kann sogar tödlich enden. Da Fleischverzehr infizierter Nutztiere einen der Hauptinfektionswege darstellt, weisen Skelettmuskelzellen (SkMZ) eine enorme Bedeutung für die Übertragung von Toxoplasma auf den Menschen auf. Das Ziel dieser Arbeit war es daher, zelltyp-spezifische Faktoren zu identifizieren und zu charakterisieren, die die Toxoplasma-Entwicklung und Bradyzoitenbildung in SkMZ regulieren. Die Untersuchungen wurden mithilfe der murinen C2C12-SkMZ-Linie in vitro durchgeführt, die von proliferierenden Myoblasten in Pferdeserum-haltigem Medium oder aufgrund erhöhter Zelldichte effektiv zu polykernigen Myotuben differenzierten. Die Effektivität der terminalen Differenzierung von C2C12-SkMZ wurde durch den Nachweis muskelspezifischer Marker wie MyoD, Myogenin und Myosin Heavy Chain (MyHC) mittels Reverse Transkriptase-qPCR (RT qPCR), Immunfluoreszenz sowie Nachweis des Zellzyklusarrests mittels BrdU-Markierung validiert. Die Infektion von terminal differenzierten C2C12-Myotuben, proliferierenden C2C12-Myoblasten und murinen NIH3T3-Kontrollfibroblasten mit T. gondii zeigte, dass der Parasit in Myotuben deutlich mehr bradyzoitenspezifische ENO1- bzw. BAG1-Transkripte exprimierte als in Myoblasten und Fibroblasten. Außerdem war die Gewebszystenbildung bei gleichzeitig reduzierter Parasitenreplikation in terminal differenzierten C2C12-Myotuben deutlich erhöht. Demgegenüber förderten proliferierende C2C12-Myoblasten und NIH3T3-Fibroblasten die Replikation von Toxoplasma bei gleichzeitig geringer Bradyzoitenbildung. Diese Daten weisen erstmalig auf die Bedeutung des Zelltyps und dessen Differenzierung für die Parasitenentwicklung und die Stadienkonversion in SkMZ hin. Für genauere Untersuchungen von Zelltyp-spezifischen Interaktionen mit T. gondii wurden die Transkriptome von terminal differenzierten C2C12-Myotuben und Neuronen sowie von proliferierenden NIH3T3-Fibroblasten und Astrozyten vor und nach Infektion mit T. gondii für 24 Stunden mittels High-Throughput RNA-Sequenzierung ermittelt. Die Analysen zeigten einen deutlich größeren Einfluss der zelltyp-spezifische Genexpression auf das Gesamttranskiptom der vier Zelltypen als die Expressionsveränderungen aufgrund der Toxoplasma-Infektion. Allerdings wurden auch Gengruppen identifiziert, die in den terminal differenzierten SkMZ und Neuronen im Vergleich zu Fibroblasten und Astrozyten differentiell exprimiert waren. Des Weiteren bewirkte die T. gondii-Infektion eine signifikante Expressionssteigerung u. a. von Zellzyklus-regulierenden Transkripten spezifisch in terminal differenzierten SkMZ und Neuronen, was auf ihre mögliche Beteiligung an der Toxoplasma-Stadienkonversion hindeutete. Daher wurden anschließend die Expressionsprofile ausgesuchter Zellzyklusregulatoren im Laufe der terminalen C2C12-SkMZ-Differenzierung und der Toxoplasma-Infektion mittels RT qPCR- und Western Blot-Analysen untersucht. Während die Transkription der negativen Zellzyklus-Modulatoren Tspyl2 und dem ‚down stream‘-liegenden Targetgen p21 im Laufe der terminalen Differenzierung von C2C12-Myoblasten zunahm, sank begleitend die Transkription der Uhrf1- und Ccnb1- (CyclinB1) Aktivatoren. Nach Infektion wurde spezifisch in Myotuben, nicht aber in Myoblasten oder Fibroblasten, eine weitere Steigerung der Tspyl2-Transkripte durch RT-qPCR-Analysen nachgewiesen. Gleichzeitig reagierten C2C12-Myotuben auch mit Hochregulation der Uhrf1- und Ccnb1-Transkription auf Toxoplasma-Infektion. Allerdings wurde durch BrdU-Markierung nachgewiesen, dass die spezifische Modulation von Zellzyklusregulatoren nach Infektion von Myotuben den Zellzyklusarrest nicht aufhob und C2C12-Myotuben nicht zur Zellteilung anregte. Da Überexpression von CDA-1 (humanes Tspyl2-Ortholog) in humanen Fibroblasten die Stadienkonversion von T. gondii fördert, wurde die Funktion des Tspyl2-Zellzyklusregulators in SkMZ analysiert. ‚Knock-down‘ von Tspyl2 mittels shRNA unterdrückte effektiv die terminale C2C12-Myoblastendifferenzierung. Bemerkenswerterweise führte dies nach T. gondii-Infektion zweier ausgesuchter Tspyl2 shRNA-C2C12-Transfektanten zu einer verstärkten Toxoplasma-Replikation im Vergleich zu Kontrolltransfektanten und WT Myotuben. Gleichzeitig war in Tspyl2-‚Knock-down‘-Mutanten die Parasitendifferenzierung zum Bradyzoitenstadium sowie die Gewebezystenbildung vermindert. Diese Ergebnisse zeigen erstmalig, dass in SkMZ die spontane Differenzierung von T. gondii zum Bradyzoiten wesentlich von dem Zellzyklusregulator Tspyl2 und der terminalen Myotubendifferenzierung abhängt. Differenzierung von SkMZ führte u.a. auch zu veränderten Expressionsprofilen von Zytokinen und Chemokinen in C2C12-Myotuben, -Myoblasten und Kontrollfibroblasten. So wurden mehrere pro-inflammatorischen Zytokine in Myotuben deutlich stärker als in Myoblasten oder Fibroblasten exprimiert. Nach Infektion von C2C12-Myotuben stiegen die Transkriptmengen von IL-23, IL 1α und IL 1β an. Diese Ergebnisse könnten neben Zellzyklusregulatoren auch auf den Einfluss von Immunfaktoren bei der Zelltyp-spezifischen Stadienkonversion in differenzierten SkMZ hindeuten In dieser Arbeit wurde zum ersten Mal gezeigt, dass der Differenzierungsstatus der SkMZ die Stadienkonversion und die Gewebszystenbildung eindeutig beeinflusst. Da die terminale SkMZ-Differenzierung von Zellzyklusregulatoren eingeleitet wird und ihre Expressionen offensichtlich unter dem Einfluss der T. gondii-Infektion stehen, könnten sie einen Einflus auf die Induktion der Stadiendifferenzierung von schnell replizierenden Tachyzoiten zu persistierenden Bradyzoiten ausüben, was am Beispiel des negativen Zellzyklusregulators Tspyl2 in dieser Arbeit nachgewiesen wurde. Des Weiteren wurde gezeigt, dass Myotuben mit der Produktion von proinflammatorischen Molekülen aktiv auf die Toxoplasma-Infektion reagieren und ihre Expression zur lokalen Immunantwort der SkMZ beitragen dürften

    Interferon-γ Restricts <em>Toxoplasma gondii</em> Development in Murine Skeletal Muscle Cells via Nitric Oxide Production and Immunity-Related GTPases

    Get PDF
    <div><p>The apicomplexan parasite <em>Toxoplasma gondii</em> is regularly transmitted to humans via the ingestion of contaminated meat products from chronically infected livestock. This route of transmission requires intracellular development and long-term survival of the parasite within muscle tissue. In this study, we determined the cell-autonomous immunity of mature primary embryonic or C2C12 skeletal muscle cells (SkMCs) to infection with <em>T. gondii</em>. Non-activated SkMCs and control fibroblasts sustained parasite replication; however, interferon (IFN)-γ significantly inhibited parasite growth in SkMCs but not in fibroblasts. Intracellular parasite replication was diminished by IFN-γ whereas host cell invasion was not affected. Tumor necrosis factor (TNF) did not further increase the IFN-γ-triggered host defense of SkMCs against <em>Toxoplasma</em>. Remarkably, IFN-γ alone or in combination with TNF decreased the high level of <em>T. gondii</em> bradyzoite formation being observed in non-activated SkMCs. Stimulation of SkMCs with IFN-γ strongly triggered expression of inducible nitric oxide synthase (iNOS) transcripts, and induced significantly higher levels of nitric oxide (NO) in SkMCs than in fibroblasts. Consequently, pharmacological inhibition of iNOS partially abrogated the IFN-γ-induced toxoplasmacidal activity of SkMCs. In addition, SkMCs strongly up-regulated immunity-regulated GTPases (IRGs) following stimulation with IFN-γ. IRGs accumulated on <em>Toxoplasma</em>-containing vacuoles in SkMCs in a parasite strain-dependent manner. Subsequent vacuole disruption and signs of degenerating parasites were regularly recognized in IFN-γ-treated SkMCs infected with type II parasites. Together, murine SkMCs exert potent toxoplasmacidal activity after stimulation with IFN-γ and have to be considered active participants in the local immune response against <em>Toxoplasma</em> in skeletal muscle.</p> </div

    Medical Education Research in German Speaking Countries: Quantité Négligeable?

    Get PDF
    Background: In all Streptococcus mutans strains, 5&#x2013;13% carry a 5.6-kb plasmid. Despite its frequency, little is known about its mediated functions with most of the information coming from a single study focussing on plasmid pUA140. Objective: Here, we describe the sequence and genetic organization of two S. mutans 5.6-kb plasmids, pDC09 and pNC101. Results: Based on PicoGreen dsDNA quantification and Real-Time quantitative PCR (RTQ-PCR), the plasmid copy number was found to range between 10 and 74, depending on the strain tested. In contrast to literature, we identified six instead of five open reading frames (ORFs). While the putative gene products of ORF1 (as a Rep-protein) and ORF2 (as a Mob-protein) could be confirmed as being identical to those from pUA140, the functions of ORF3 (unknown) and ORF 4 (possibly AtpE homologue) could not be further revealed. However, the product of ORF5 showed a fairly high identity (38&#x2013;50%) and structural similarity (58&#x2013;74%) to RelE of Streptococcus pneumoniae, Streptococcus equi, and Streptococcus downei. In addition, we identified a functionally corresponding ORF6 encoding a protein with 61&#x2013;68% identity (81&#x2013;86% similarity) to the S. equi and S. downei antitoxin of the RelB family. RelE and RelB together form a plasmid-encoded toxin-antitoxin (TA) system, RelBEplas. Despite its rather limited sequence similarity with chromosomal TA systems in S. mutans (RelBEchro, MazEF, HicBA), we found similar tertiary structures applying I-Tasser protein prediction analysis. Conclusion: Type II-toxins, as the plasmid-encoded RelE, are RNA endonucleases. Depending on their mRNA cleavage activity, they might 1) kill every plasmid-free progeny, thereby stabilizing plasmid transfer at the expense of the host and/or 2) help S. mutans enter a dormant state and survive unfavourable environmental conditions. Whilst a function in plasmid stabilization has been confirmed, a function in persistence under nutritional stress, tested here by inducing amino acid starvation, could not be demonstrated so far

    Impact of IFN-γ and TNF on <i>Toxoplasma</i> development in SkMCs.

    No full text
    <p>Primary embryonic SkMCs or C2C12 SkMCs were differentiated to mature myotubes. They were, together with control NIH/3T3 fibroblasts, infected with <i>T. gondii</i> NTE tachyzoites (parasite-host cell ratio 2∶1). At the time of infection, cells were stimulated or not with 100 U/ml IFN-γ alone or combined with 100 pg/ml TNF. (A) At different time points post infection (p.i.), C2C12 and NIH/3T3 cells were lysed, and soluble proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were probed with anti-<i>T. gondii</i> serum, anti-<i>T. gondii</i> SAG1, anti-mouse myosin HC, or anti-mouse actin and appropriate HRPO-conjugated secondary antibodies. Immune complexes were visualized by enhanced chemiluminescence. (B) Forty-eight hours after infection, cells were fixed and permeabilized, and <i>T. gondii</i> was visualized by immunofluorescence staining. The total cell population was stained with propidium iodide. The number of parasites was counted in at least 100 parasitophorous vacuoles (PV) per sample. Data represents the mean number of parasites per PV ± S.E.M. from at least 3 independent experiments; significant differences between non-stimulated and stimulated cells are indicated (*p<0.05). (C–E) At the time of infection, primary SkMCs (C), C2C12 (D) or NIH/3T3 (E) cells were stimulated with IFN-γ alone (open squares), IFN-γ combined with TNF (open triangles), or were left untreated (closed symbols). Cells were fixed at different time points after infection, and <i>T. gondii</i> and total cells were visualized by immunolabelling and propidium iodide staining, respectively. After inspection of at least 500 cells per sample, the percentages of infected cells were calculated. Results are means ± S.E.M. from at least 3 independent experiments.</p
    corecore