69 research outputs found

    Dynamics and particle fluxes in atmospheric-pressure electronegative radio frequency microplasmas

    Get PDF
    We report on intricate dynamics observed in atmospheric-pressure rf electronegative discharges where electrons and anions are separated due to their different mobilities. This results in the formation of positively charged regions between an electronegative plasma core and an oscillating electron ensemble. It is found that for a given input power, the electron, ion (both positive and negative) and neutral fluxes increase as the gap size is reduced, resulting in a more efficient delivery of chemical species to a treated target

    Particle-in-cell simulations of rf breakdown

    Full text link
    Breakdown voltages of a capacitively coupled radio frequency argon discharge at 27 MHz are studied. We use a one-dimensional electrostatic PIC code to investigate the effect of changing the secondary emission properties of the electrodes on the breakdown voltage, particularly at low pd values. Simulation results are compared with the available experimental results and a satisfactory agreement is found.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Nanostructured conformal hybrid solar cells: a promising architecture towards complete charge collection and light absorption

    Get PDF
    We introduce hybrid solar cells with an architecture consisting of an electrodeposited ZnO nanorod array (NRA) coated with a conformal thin layer (< 50 nm) of organic polymer-fullerene blend and a quasi-conformal Ag top contact (Thin/NR). We have compared the performance of Thin/NR cells to conventional hybrid cells in which the same NRAs are completely filled with organic blend (Thick/NR). The Thin/NR design absorbs at least as much light as Thick/NR cells, while charge extraction is significantly enhanced due to the proximity of the electrodes, resulting in a higher current density per unit volume of blend and improved power conversion efficiency. The NRAs need not be periodic or aligned and hence can be made very simply

    Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders

    Full text link
    For sequences of complex 3D shapes in time we present a general approach to detect patterns for their analysis and to predict the deformation by making use of structural components of the complex shape. We incorporate long short-term memory (LSTM) layers into an autoencoder to create low dimensional representations that allow the detection of patterns in the data and additionally detect the temporal dynamics in the deformation behavior. This is achieved with two decoders, one for reconstruction and one for prediction of future time steps of the sequence. In a preprocessing step the components of the studied object are converted to oriented bounding boxes which capture the impact of plastic deformation and allow reducing the dimensionality of the data describing the structure. The architecture is tested on the results of 196 car crash simulations of a model with 133 different components, where material properties are varied. In the latent representation we can detect patterns in the plastic deformation for the different components. The predicted bounding boxes give an estimate of the final simulation result and their quality is improved in comparison to different baselines

    The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    Get PDF
    © 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 19 (6), 063505 and may be found at http://dx.doi.org/10.1063/1.4729730Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dcplasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dcplasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array

    Chaos in atmospheric-pressure plasma jets

    Get PDF
    This article was published in the journal, Plasma Sources Science and Technology [© IOP Publishing Ltd]. The definitive version is available at: http://dx.doi.org/10.1088/0963-0252/21/3/034008We report detailed characterization of a low-temperature atmospheric-pressure plasma jet that exhibits regimes of periodic, quasi-periodic and chaotic behaviors. Power spectra, phase portraits, stroboscopic section and bifurcation diagram of the discharge current combine to comprehensively demonstrate the existence of chaos, and this evidence is strengthened with a nonlinear dynamics analysis using two control parameters that maps out periodic, period-multiplication, and chaotic regimes over a wide range of the input voltage and gas flow rate. In addition, optical emission signatures of excited plasma species are used as the second and independent observable to demonstrate the presence of chaos and period-doubling in both the concentrations and composition of plasma species, suggesting a similar array of periodic, quasi-periodic and chaotic regimes in plasma chemistry. The presence of quasi-periodic and chaotic regimes in structurally unbounded low-temperature atmospheric plasmas not only is important as a fundamental scientific topic but also has interesting implications for their numerous applications. Chaos may be undesirable for industrial applications where cycle-to-cycle reproducibility is important, yet for treatment of cell-containing materials including living tissues it may offer a novel route to combat some of the major challenges in medicine such as drug resistance. Chaos in low-temperature atmospheric plasmas and its effective control are likely to open up new vistas for medical technologies

    Wall fluxes of reactive oxygen species of an rf atmospheric-pressure plasma and their dependence on sheath dynamics

    Get PDF
    This article was published in the serial, Journal of Physics D: Applied Physics [© IOP Publishing Ltd]. The definitive version is available at: http://dx.doi.org/10.1088/0022-3727/45/30/305205A radio-frequency (rf) atmospheric-pressure discharge in He–O2 mixture is studied using a fluid model for its wall fluxes and their dependence on electron and chemical kinetics in the sheath region. It is shown that ground-state O, O+2 and O− are the dominant wall fluxes of neutral species, cations and anions, respectively. Detailed analysis of particle transport shows that wall fluxes are supplied from a boundary layer of 3–300ÎŒm immediately next to an electrode, a fraction of the thickness of the sheath region. The width of the boundary layer mirrors the effective excursion distance during lifetime of plasma species, and is a result of much reduced length scale of particle transport at elevated gas pressures. As a result, plasma species supplying their wall fluxes are produced locally within the boundary layer and the chemical composition of the overall wall flux depends critically on spatio-temporal characteristics of electron temperature and density within the sheath. Wall fluxes of cations and ions are found to consist of a train of nanosecond pulses, whereas wall fluxes of neutral species are largely time-invariant

    Plasma–liquid interactions: a review and roadmap

    Get PDF
    Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas

    Needs, expectations and consequences for children growing up in a family where the parent has a mental illness

    No full text
    The lack of pan–European guidelines for empowering children of parents with mental illness led to the EU project CAMILLE – Empowerment of Children and Adolescents of Mentally Ill Parents through Training of Professionals working with children and adolescents. The aim of this initial task in the project was to analyse needs, expectations and consequences for children with respect to living with a parent with mental illness from the perspective of professionals and family members. This qualitative research was conducted in England, Finland, Germany, Italy, Norway, Poland and Scotland with 96 professionals, parents with mental illness, adult children and partners of parents with mental illness. A framework analysis method was used. Results of the study highlighted that the main consequences described for children of parental mental illness were role reversal; emotional and behavioural problems; lack of parent’s attention and stigma. The main needs of these children were described as emotional support, security and multidisciplinary help. Implications for practice are that professionals working with parents with mental illness should be aware of the specific consequences for the children and encourage parents in their parental role; multi-agency collaboration is necessary; schools should provide counselling and prevent stigma
    • 

    corecore