98 research outputs found

    Big brains stabilize populations and facilitate colonization of variable habitats in birds

    Get PDF
    The cognitive buffer hypothesis posits that environmental variability can be a major driver of the evolution of cognition because an enhanced ability to produce flexible behavioural responses facilitates coping with the unexpected. Although comparative evidence supports different aspects of this hypothesis, a direct connection between cognition and the ability to survive a variable and unpredictable environment has yet to be demonstrated. Here, we use complementary demographic and evolutionary analyses to show that among birds, the mechanistic premise of this hypothesis is well supported but the implied direction of causality is not. Specifically, we show that although population dynamics are more stable and less affected by environmental variation in birds with larger relative brain sizes, the evolution of larger brains often pre-dated and facilitated the colonization of variable habitats rather than the other way around. Our findings highlight the importance of investigating the timeline of evolutionary events when interpreting patterns of phylogenetic correlation

    Avian cerebellar floccular fossa size is not a proxy for flying ability in birds

    Get PDF
    Extinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR). Because gaze stabilization is a critical aspect of flight, some authors have suggested that the flocculus is enlarged in flying species. Whether this can be further extended to a floccular expansion in highly maneuverable flying species or floccular reduction in flightless species is unknown. Here, we used micro computed-tomography to reconstruct “virtual” endocranial casts of 60 extant bird species, to extract the same level of anatomical information offered by fossils. Volumes of the floccular fossa and entire brain cavity were measured and these values correlated with four indices of flying behavior. Although a weak positive relationship was found between floccular fossa size and brachial index, no significant relationship was found between floccular fossa size and any other flight mode classification. These findings could be the result of the bony endocranium inaccurately reflecting the size of the neural flocculus, but might also reflect the importance of the flocculus for all modes of locomotion in birds. We therefore conclude that the relative size of the flocculus of endocranial casts is an unreliable predictor of locomotor behavior in extinct birds, and probably also pterosaurs and non-avian dinosaurs

    Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds

    Get PDF
    Sherpa Romeo green journal: open accessThe comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparativestudies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylgenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for theses tudies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” where by one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size.Ye

    The evolution of skilled forelimb movements in carnivorans

    Get PDF
    xii, 151 leaves : ill. ; 28 cm.Emancipating the forelimbs from locomotion for use in other activities, such as food manipulation, is a major evolutionary milestone. A variety of selective forces and evolutionary correlates may influence the evolution of various degrees of skill with which the forelimbs are used. Using the order Carnivora as a test group, I assesed the relative influence of six factors: relative brain size, neocortical volume, manus proportions, body size, phylogenetic relatedness, type of locomotion and diet. I developed a rating system to describe the dexterity of individual species and compared the scores to the six factors using modern comparative methods. Only phylogeny and diet were significanly correlated with forelimb dexterity. More specifically, forelimb dexterity tends to be higher in caniform than in feliform carnivorans and decreases with increasing specialisation on vertebrate prey. I conclude that food handling and feeding niche breath have a significant effect upon the evolution of skilled forelimb movements

    Environmental variation and the evolution of large brains in birds

    Get PDF
    Environmental variability has long been postulated as a major selective force in the evolution of large brains. However, assembling evidence for this hypothesis has proved difficult. Here, by combining brain size information for over 1,200 bird species with remote-sensing analyses a to estimate temporal variation in ecosystem productivity, we show that larger brains (relative to body size) are more likely to occur in species exposed to larger environmental variation throughout their geographic range. Our reconstructions of evolutionary trajectories are consistent with the hypothesis that larger brains (relative to body size) evolved when the species invaded more seasonal Regions. However, the alternative-that the species already possessed larger brains when they invaded more seasonal regions-cannot be completely ruled out. Regardless of the exact mechanism, our findings provide strong empirical support for the association between large brains and environmental variability

    The secret world of shrimps: polarisation vision at its best

    Get PDF
    Animal vision spans a great range of complexity, with systems evolving to detect variations in optical intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision. Polarisation is fully measured via Stokes' parameters--obtained by combined linear and circular polarisation measurements. Optimal polarisation vision is the ability to see Stokes' parameters: here we show that the crustacean \emph{Gonodactylus smithii} measures the exact components required. This vision provides optimal contrast-enhancement, and precise determination of polarisation with no confusion-states or neutral-points--significant advantages. We emphasise that linear and circular polarisation vision are not different modalities--both are necessary for optimal polarisation vision, regardless of the presence of strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table

    Zebrin II / Aldolase C expression in the cerebellum of the western diamondback rattlesnake (Crotalus atrox)

    Get PDF
    Sherpa Romeo green journal: open accessAldolase C, also known as Zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+), alternating with stripes of Purkinje cells with little or no expression (ZII-). The patterns of ZII+ and ZII- stripes in the cerebellum of birds and mammals are strikingly similar, suggesting that it may have first evolved in the stem reptiles. In this study, we examined the expression of ZII in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). In contrast to birds and mammals, the cerebellum of the rattlesnake is much smaller and simpler, consisting of a small, unfoliated dome of cells. A pattern of alternating ZII+ and ZII- sagittal stripes cells was not observed: rather all Purkinje cells were ZII+. This suggests that ZII stripes have either been lost in snakes or that they evolved convergently in birds and mammals.Ye

    Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    Get PDF
    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds

    Getting a Head Start: Diet, Sub-Adult Growth, and Associative Learning in a Seed-Eating Passerine

    Get PDF
    Developmental stress, and individual variation in response to it, can have important fitness consequences. Here we investigated the consequences of variable dietary protein on the duration of growth and associative learning abilities of zebra finches, Taeniopygia guttata, which are obligate graminivores. The high-protein conditions that zebra finches would experience in nature when half-ripe seed is available were mimicked by the use of egg protein to supplement mature seed, which is low in protein content. Growth rates and relative body proportions of males reared either on a low-protein diet (mature seed only) or a high-protein diet (seed plus egg) were determined from body size traits (mass, head width, and tarsus) measured at three developmental stages. Birds reared on the high-protein diet were larger in all size traits at all ages, but growth rates of size traits showed no treatment effects. Relative head size of birds reared on the two diets differed from age day 95 onward, with high-diet birds having larger heads in proportion to both tarsus length and body mass. High-diet birds mastered an associative learning task in fewer bouts than those reared on the low-protein diet. In both diet treatments, amount of sub-adult head growth varied directly, and sub-adult mass change varied inversely, with performance on the learning task. Results indicate that small differences in head growth during the sub-adult period can be associated with substantial differences in adult cognitive performance. Contrary to a previous report, we found no evidence for growth compensation among birds on the low-protein diet. These results have implications for the study of vertebrate cognition, developmental stress, and growth compensation

    Heart Rate during Conflicts Predicts Post-Conflict Stress-Related Behavior in Greylag Geese

    Get PDF
    Background: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids), but also in how individuals behave directly after a conflict. Certain ‘stress-related behaviors ’ such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual’s emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. Methodology/Principal Findings: We recorded beat-to-beat heart rates (HR) of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. Conclusions/Significance: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that ‘stress-related behaviors’ are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual’s emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose tha
    corecore