65 research outputs found

    ATP level variations in heterotrophic bacteria during attachment on hydrophilic and hydrophobic surfaces

    Get PDF
    A survey of the extracellular ATP levels of 86 heterotrophic bacteria showed that gram-negative bacteria of the genera Sulfitobacter, Staleya, and Marinobacter secreted elevated amounts of extracellular ATP, ranging from 6.0 to 9.8 pM ATP/colony forming unit (cfu), and that gram-positive bacteria of the genera Kocuria and Planococcus secreted up to 4.1 pM ATP/cfu. Variations in the levels of extracellular and intracellular ATP-dependent luminescence were monitored in living cells of Sulfitobacter mediterraneus ATCC 700856T and Planococcus maritimus F 90 during 48 h of attachment on hydrophobic (poly[tert-butyl methacrylate], PtBMA) and hydrophilic (mica) surfaces. The bacteria responded to different polymeric surfaces by producing either intracellular or extracellular ATP. The level of intracellular ATP in S. mediterraneus ATCC 700856T attached to either surface was as high as 50–55 pM ATP/cfu, while in P. maritimus F 90 it was 120 and 250 pM ATP/cfu on PtBMA and mica, respectively. S. mediterraneus ATCC 700856T generated about 20 and 50 pM of extracellular ATP/cfu on PtBMA and mica, respectively, while the amount generated by P. maritimus F 90 was about the same for both surfaces, 6 pM ATP/cfu. The levels of extracellular ATP generated by S. mediterraneus during attachment on PtBMA and mica were two to five times higher than those detected during the initial screening. High-resolution atomic force microscopy imaging revealed a potentially interesting correlation between the porous cell-surface of certain (α- and γ-proteobacteria and their ability to secrete high amounts of ATP. [Int Microbiol 2006; 9(1):37-46

    Investigate the Possibility of Using Phosphorescence in Clinical Oncology as an Early Prognostic Test in Detecting Brain Carcinogenesis.

    Get PDF
    Phosphorescence is considered one of the non-invasive glioblastoma testing methods based on studying molecular energy and the metabolism of L-tryptophan (Trp) through KP, which provides essential information on regulating immunity and neuronal function. This study aimed to conduct a feasibility study using phosphorescence in clinical oncology as an early prognostic test in detecting Glioblastoma. This study was conducted on 1039 patients who were operated on with follow-up between January 1, 2014, and December 1, 2022, and retrospectively evaluated in participating institutions in Ukraine (the Department of Oncology, Radiation Therapy, Oncosurgery, and Palliative Care at the Kharkiv National Medical University). Method of protein phosphorescence detection included two steps. During the first step, of luminol-dependent phosphorescence intensity in serum was carried out after its activation by the light source, according to the spectrofluorimeter method, as follows. At a temperature of 30 °C, serum drops were dried for 20 min to form a solid film. After that, we put the quartz plate with dried serum in a phosphoroscope of luminescent complex and measured the intensity. With the help of Max-Flux Diffraction Optic Parallel Beam Graded Multilayer Monochromator (Rigaku Americas Corporation) following spectral lines as 297, 313, 334, 365, 404, and 434 nm were distinguished and absorbed by serum film in the form of light quantum. The monochromator exit split width was 0.5 mm. Considering the limitations of each of the non-invasive tools currently available, phosphorescence-based diagnostic methods are ideally integrated into the NIGT platform: a non-invasive approach for visualizing a tumor and its main tumor characteristics in the spatial and temporal order. Because trp is present in virtually every cell in the body, these fluorescent and phosphorescent fingerprints can be used to detect cancer in many different organs. Using phosphorescence, it is possible to create predictive models for GBM in both primary and secondary diagnostics. This will assist clinicians in selecting the appropriate treatment option, monitoring treatment, and adapting to the era of patient-centered precision medicine

    Duchenne Muscular Dystrophy Animal Models

    Get PDF
    Duchenne muscular dystrophy is a complex and severe orphan disease. It develops when the organism lacks the expression of dystrophin - a large structural protein. Dystrophin is transcribed from the largest gene in the human genome. At the moment, there is no cure available. Dozens of groups all over the world search for cure. Animal models are an important component of both the fundamental research and therapy development. Many animal models reproducing the features of disease were created and actively used since the late 80’s until present. The species diversity spans from invertebrates to primates and the genetic diversity of these models spans from single mutations to full gene deletions. The models are often non-interchangeable; while one model may be used for particular drug design it may be useless for another. Here we describe existing models, discuss their advantages and disadvantages and potential applications for research and therapy development

    Pathophysiology and biomechanics of stretch-induced peripheral nerve injuries

    Get PDF
    Objective: to investigate pathophysiology and biomechanics of the nerve stretching and to form a biomechanical model of a nerve stretch injury. Materials and methods. We analyzed and summarized the data from open access sources (eLibrary, Scopus, Web of Science, PubMed) with unlimited search depth. A search was performed using the following keywords: растяжение нерва (English: nerve stretching), stretching nerve, biomechanical nerve stretching, nerve stretching injury. Results. Here are presented key historical information and biochemical, neurophysiological, and biomechanical events related to a nerve stretch injury. Objective experimental data on the nerve stretching process are summarized. Conclusions. A nerve is a heterogeneous elastic cord, which can be slightly stretched under physiological conditions due to the involvement of its sheath structures. In a stretched nerve, ischemic lesions have an early onset and further become irreversible. Nerve conduction disorders occur, resulting in a severe neurological deficit. When the nerve is stretched by more than a third, it ruptures and the sequence in which fragmented neural structures occur during nerve tension remains unclear

    Enhancement of biomimetic enzymatic mineralization of gellan gum polysaccharide hydrogels by plant-derived gallotannins

    Get PDF
    Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility

    Investigation of oncolytic potential of vaccine strains of yellow fever and tick-borne encephalitis viruses against glioblastoma and pancreatic carcinoma cell lines

    Get PDF
    Introduction. Flaviviruses, possessing natural neurotropicity could be used in glioblastoma therapy using attenuated strains or as a delivery system for antitumor agents in an inactivated form. Objective. To investigate the sensitivity of glioblastoma and pancreatic carcinoma cell lines to vaccine strains of yellow fever and tick-borne encephalitis viruses. Materials and methods. Cell lines: glioblastoma GL-6, T98G, LN-229, pancreatic carcinoma MIA RaCa-2 and human pancreatic ductal carcinoma PANC-1. Viral strains: 17D yellow fever virus (YF), Sofjin tick-borne encephalitis virus (TBEV). Virus concentration were determined by plaque assay and quantitative PCR. Determination of cell sensitivity to viruses by MTT assay. Results. 17D YF was effective only against pancreatic carcinoma tumor cells MIA Paca-2 and had a limited effect against PANC-1. In glioblastoma cell lines (LN229, GL6, T98G), virus had no oncolytic effect and the viral RNA concentration fell in the culture medium. Sofjin TBEV showed CPE50 against MIA Paca-2 and a very limited cytotoxic effect against PANC-1. However, it had no oncolytic effect against glioblastoma cell lines (LN229, T98G and GL6), although virus reproduction continued in these cultures. For the GL6 glioblastoma cell line, the viral RNA concentration at the level with the infection dose was determined within 13 days, despite medium replacement, while in the case of the LN229 cell line, the virus concentration increased from 1 × 109 to 1 × 1010 copies/ml. Conclusion. Tumor behavior in organism is more complex and is determined by different microenvironmental factors and immune status. In the future, it is advisable to continue studying the antitumor oncolytic and immunomodulatory effects of viral strains 17D YF and Sofjin TBEV using in vivo models
    corecore