32 research outputs found

    Effects of cholesterol- or 7-ketocholesterol-containing liposomes on colony-forming ability of cultured cells

    Get PDF
    AbstractExperiments with cultured Chinese hamster cells showed that incubation of the cells with (phosphatidylcholine + cholesterol + 7-ketocholesterol)-containing liposomes (4:3:1 by weight) during two hours led to a decrease in the colony-forming ability of cells down to zero, while (phosphatidylcholine + cholesterol)-containing liposomes (1:1 by weight) reduce this parameter by 90%. Furthermore, the cholesterol-containing liposomes (without 7-ketocholesterol) induce a decrease in the number of the maximal-site colonies accompanied by the corresponding increase in the number of the middle-size colonies

    Chemically Induced Spin Hyperpolarization: Coherence Formation in Reaction Products

    Get PDF
    Chemically induced dynamic nuclear polarization (CIDNP) has emerged as a highly informative method to study spin-dependent radical reactions by analyzing enhanced NMR (nuclear magnetic resonance) signals of their diamagnetic reaction products. In this way, one can probe the structure of elusive radical intermediates and determine their magnetic parameters. A careful examination of experimental CIDNP data at variable magnetic fields shows that formation of hyperpolarized molecules in a coherent state is a ubiquitous though rarely discussed phenomenon. The presence of nuclear spin coherences commonly leads to subsequent polarization transfer among coupled spins in the diamagnetic products of radical recombination reaction that must be taken into account when analyzing the results of CIDNP experiments at low magnetic field. Moreover, such coherent polarization transfer can be efficiently exploited to polarize spins, which do not acquire CIDNP directly. Here we explain under what conditions such coherences can be generated, focusing on the key role of level anti-crossings in coherent polarization transfer, and provide experimental approaches to probing nuclear spin coherences and their time evolution. We illustrate the theoretical consideration of the outlined coherent spin phenomena in CIDNP by examples, obtained for the dipeptide tryptophan–tryptophan

    Electrical activity in rat retina in a streptozotocin-induced diabetes model

    Get PDF
    Objectives: Diabetic retinopathy remains the major cause of blindness among the working-age population of developed countries. Considering this, experimental models of diabetes involving laboratory animals are important for assessing clinically significant methods to determine early pathologic alterations of the retina. The early detection of diabetic retinopathy in combination with a search for new pathogenetic targets will enable focusing on new strategies to limit the development of critical changes in the retina and to prolong retinal functioning during the development of diabetes mellitus. Aim: This study aimed to define parameters of electroretinography test that identifies changes due to retinal impairment in diabetes. Methods: Experimental diabetes was induced in Wistar rats by intraperitoneally injecting streptozocin (65 mg/kg; group DM). The control group (CB) received intraperitoneal injections of the vehicle, i.e. citric buffer. On each consecutive day of the experiment, all rats received insulin detemir (2 u/kg). Ophthalmoscopy and electroretinography were conducted before initiating the experiment and after 50, 58 and 66 days of injectin sptreptozocin. Results: Amid 2u\kg insulin injection the glucose level in venous blood in DM group amounted to 30-40 mM. The ophthalmoscopy showed that the optic nerve disk paled by the 50th day, with its line erasing. During electroretinography, wave amplitude in oscillatory potential test tended to decrease. -wave latency of photopic system increased with -wave latency of photopic system and - and -waves latency of scotopic system not altering. In addition, the amplitude of rhythmic stimulation of 8 and 12 Hz decreased. Conclusion: The most apparent parameters of electroretinography for modelling streptozocin-induced diabetes are wave amplitude during the oscillatory potential test, photopic B-wave latency and the amplitude of rhythmic stimulation. These results suggest that in diabetes, ischaemic injury is an important cause of early dysfunction of inner retinal layers

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Observation of parametric X-rays produced by 400 GeV/c protons in bent crystals

    Get PDF
    Spectral maxima of parametric X-ray radiation (PXR) produced by 400 GeV/c protons in bent silicon crystals aligned with the beam have been observed in an experiment at the H8 external beam of the CERN SPS. The total yield of PXR photons was about 10-6 per proton. Agreement between calculations and the experimental data shows that the PXR kinematic theory is valid for bent crystals with sufficiently small curvature as used in the experiment. The intensity of PXR emitted from halo protons in a bent crystal used as a primary collimator in a circular accelerator may be considered as a possible tool to control its crystal structure, which is slowly damaged because of irradiation. The intensity distribution of PXR peaks depends on the crystal thickness intersected by the beam, which changes for different orientations of a crystal collimator. This dependence may be used to control crystal collimator alignment by analyzing PXR spectra produced by halo protons.peer-reviewe

    Effect of local modulation in enzymatic homeostasis on bone turnover marker dynamics in blood at substituting femur defects with vaterite scaffolds

    No full text
    The goal of this research was the investigation of concentration changes in the blood bone turnover markers during local modulation of enzymatic homeostasis by means of targeted delivery of alkaline phosphatase (ALP) with polycaprolactone (PCL) and vaterite (VT) scaffolds implanted into the femur defects in white rats. Material and Methods ― The tests of PCL/VT/ALP scaffold implantations into the bone defects were performed on 30 white rats, and the serum of intact animals was used as the control. ELISA and multiplex assay were used to find inflammatory and bone turnover markers including monocyte chemoattractant-1, sclerostin, fibroblast growth factor-23, connective tissue growth factor (CTGF), osteoprotegerin, osteocalcin, β-сross laps and the activity of tartrate-resistant acid phosphatase-5b in the blood of experimental animals. The activity of serum ALP was tested with the conventional kinetic method. The morphology of the reparative processes was verified by microscopy of specimens taken from the implantation areas and stained with hematoxylin or eosin. Results ― The PCL/VT/ALP scaffold implantations into the bone defects of white rats caused active osteogenesis along with the steady rise in osteocalcin concentration in blood. ALP activity in the blood did not depend on the exogenous enzyme in the scaffold and rose by the 28th day after the implantations. The targeted ALP delivery into the defect area caused the rise in CTGF concentration as well as the decrease in blood sclerostin within a short time after the implantations. Conclusion ― The modulation of the local enzyme homeostasis by means of the targeted ALP delivery with PCL/VT scaffolds stimulated reparative osteogenesis within a short time after the implantations with no changes to the bloodstream or local inflammatory changes suggesting their biocompatibility and the safety in use

    Morphological Analysis of Poly(4,4′-oxydiphenylene-pyromellitimide)-Based Organic Solvent Nanofiltration Membranes Formed by the Solution Method

    No full text
    Poly-(4,4′-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem. The study corresponds to the rediscovery of poly(4,4′-oxydiphenylene–pyromellitimide)-based soluble copoly(urethane-imides) as membrane polymers of a new generation. It is shown that the physical structure of PUI films prepared by the solution method becomes porous after the removal of urethane blocks from the polymer, and the pore size varies depending on the conditions of thermolysis and subsequent hydrolysis of the membrane polymer. The film annealed at 170 °C with a low destruction degree of polycaprolactam blocks exhibits the properties of a nanofiltration membrane. It is stable in the aprotic solvent DMF and has a Remasol Brilliant Blue R retention coefficient of 95%. After the hydrolysis of thermally treated films in acidic media, ultrafiltration size 66–82 nm pores appear, which leads to an increase in the permeate flow by more than two orders of magnitude. This circumstance provides opportunities for controlling the membrane polymer structure for further optimization of the performance characteristics of filtration membranes based on it. Thus, we proposed a new preparation method of ultra- and nanofiltration membranes based on poly(4,4′-oxydiphenylene–pyromellitimide) that are stable in aprotic solvents

    Selective Destruction of Soluble Polyurethaneimide as Novel Approach for Fabrication of Insoluble Polyimide Films

    No full text
    Polymeric coatings and membranes with extended stability toward a wide range of organic solvents are practical for application in harsh environments; on the other hand, such stability makes their processing quite difficult. In this work, we propose a novel method for the fabrication of films based on non-soluble polymers. The film is made from the solution of block copolymer containing both soluble and insoluble blocks followed by selective decomposition of soluble blocks. To prove this concept, we synthesized copolymer [(imide)n-(polyurethane)]m, in which the imide blocks were combined with polyurethane blocks based on polycaprolactone. By selective hydrolysis of urethane blocks in the presence of acid, it was possible to obtain the insoluble polyimide film for the first time. It was shown that the combination of thermal and acid treatment allowed almost complete removal of urethane blocks from the initial copolymer chains. IR spectroscopy, TGA, DSC and DMA methods were used to study the evaluation of the structure and properties of polymeric material as a result of thermal oxidation and hydrolysis by acid. It was shown that the polymeric films obtained by controlled decomposition were not soluble in aprotic solvent, such as dimethylformamide, n-methylpyrrolidone and dimethyl sulfoxide, and showed very close similarity to the homopolymer consisting of the same imide monomer, poly-(4,4′oxydiphenylene)pyromellitimide, confirming the feasibility of the proposed concept and its perspectives for fabrication of organic solvent-resistant membranes
    corecore