28 research outputs found

    Preface and Acknowledgement

    Get PDF
    Background. The choice of treatment strategy for coronary artery disease is often based on: 1) anatomical information on stenosis locations, and 2) functional information on their haemodynamic relevance, e.g. myocardial deformation or perfusion. Inspecting a single fused image containing both anatomical and functional information, as opposed to viewing separate images side-by-side, facilitates this treatment choice. The aim of this study is to develop a novel cardiac fusion imaging technique to combine 3D+time echocardiography (3DE) (functional information) with coronary computed tomography angiography (CCTA) (anatomical information). Method. 3DE and CCTA data sets were obtained from 20 patients with suspected coronary artery disease. The coronary artery tree was segmented from the CCTA images. A semi-automatic fusion algorithm was developed to perform the following steps: The left ventricle (LV) 3D surfaces were segmented in the CCTA image and 3DE images and used to align the two data sets. The moving 3DE LV was then visualized along with the CCTA coronary arteries. Myocardial strain was estimated and visualized on the LV surface. Results. Preliminary fusion results from images of one patient have been obtained. The figure shows the CCTA coronary artery tree aligned with a) 3DE LV endocardium in end-systole, b) 3DE LV endocardium in end-diastole, and c) 3DE LV with colour-coded instantaneous longitudinal strain. Discussion. Preliminary results show that fusion of CCTA and 3DE images is feasible. However, the algorithm needs to be further developed to increase automation and include other functional parameters, such as myocardial perfusion. Moreover, a validation study to assess algorithm performance and diagnostic value in multiple patients will be performed. QC 20150122</p

    Diversity of respiratory parameters and metabolic adaptation to low oxygen tension in mesenchymal stromal cells

    Get PDF
    Objective Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion. Materials and methods We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O2) and normoxia (20% O2). We performed mitochondrial characterization and assessed oxygen consumption- and extracellular acidification-rates (OCR and ECAR) in addition to oxygen-sensitive respiration and mitochondrial complex activities, using both the Seahorse and Oroboros systems. Results Adult and fetal MSCs displayed similar basal respiration and mitochondrial amount, however fetal MSCs had lower spare respiratory capacity and apparent coupling efficiency. Fetal MSCs expanded in either hypoxia or normoxia demonstrated similar acidification rates, while adult MSCs downregulated their aerobic glycolysis in normoxia. Acute decrease in oxygen tension caused a higher respiratory inhibition in adult compared to fetal MSCs. In both sources of MSCs, minor changes in complex activities in normoxic and hypoxic cultures were found. Conclusions In contrast to adult MSCs, fetal MSCs displayed similar respiration and aerobic glycolysis at different O2 culture concentrations during expansion. Adult MSCs adjusted their respiration to glycolytic activities, depending on the culture conditions thus displaying a more mature metabolic function. These findings are relevant for establishing optimal in vitro culturing conditions, with the aim to maximize engraftment and therapeutic outcome.CC BY-NC-ND 4.0Corresponding author: Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden. E-mail address: [email protected] (K.-H. Grinnemo).Available online 3 February 2022, Version of Record 5 February 2022The project was funded by Karolinska Institute-Mayo Clinic Collaborative Grant 2013; The Swedish Research Council young investigator: 2013–3590; Stockholm county; The Swedish Research Council; The Family Erling-Persson Foundation; ERC-2018-AdG (834860 EYELETS); Uppsala county; Uppsala County Association against Heart and Lung Diseases; and Higher Education of the Russian Federation (agreement no. 075-15-2020-899).</p

    Ischemia-Reperfusion Injury and Pregnancy Initiate Time-Dependent and Robust Signs of Up-Regulation of Cardiac Progenitor Cells

    Get PDF
    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease

    ECONOMIC FEATURES OF PROCESSED FRUIT PRODUCTION IN SERBIA

    No full text
    There are various possibilities of fruit processing regarding assortments of both semiprocessed and finished fruit products. Within a wide assortment of processed fruit products, there are semi-processed fruit products which can be directly marketed or used as raw materials in further stages of processing, thus causing different economic effects. This paper displays the indicators of economic effects (production value, production costs (especially direct costs), and the difference between production value and total production costs) in all stages of a certain type of fruit processing. The obtained results indicate that advanced stages of fruit processing entail an increase in costs, but these increased costs eventually enable higher revenues. Fruit processing is cost-effective due to the fact that fruit processing value is higher than the market value of fruits. The fruit processing value in compote production is on average 48.87% higher than the fruit market value. In semi-processed fruit production (fruit puree and pitted crushed fruits Rotativa2), the fruit processing value is on average 14.83% higher than the fruit market value

    Cardiac fusion imaging of 3D echocardiography and coronary computed tomography angiography

    No full text
    Background. The choice of treatment strategy for coronary artery disease is often based on: 1) anatomical information on stenosis locations, and 2) functional information on their haemodynamic relevance, e.g. myocardial deformation or perfusion. Inspecting a single fused image containing both anatomical and functional information, as opposed to viewing separate images side-by-side, facilitates this treatment choice. The aim of this study is to develop a novel cardiac fusion imaging technique to combine 3D+time echocardiography (3DE) (functional information) with coronary computed tomography angiography (CCTA) (anatomical information). Method. 3DE and CCTA data sets were obtained from 20 patients with suspected coronary artery disease. The coronary artery tree was segmented from the CCTA images. A semi-automatic fusion algorithm was developed to perform the following steps: The left ventricle (LV) 3D surfaces were segmented in the CCTA image and 3DE images and used to align the two data sets. The moving 3DE LV was then visualized along with the CCTA coronary arteries. Myocardial strain was estimated and visualized on the LV surface. Results. Preliminary fusion results from images of one patient have been obtained. The figure shows the CCTA coronary artery tree aligned with a) 3DE LV endocardium in end-systole, b) 3DE LV endocardium in end-diastole, and c) 3DE LV with colour-coded instantaneous longitudinal strain. Discussion. Preliminary results show that fusion of CCTA and 3DE images is feasible. However, the algorithm needs to be further developed to increase automation and include other functional parameters, such as myocardial perfusion. Moreover, a validation study to assess algorithm performance and diagnostic value in multiple patients will be performed. QC 20150122</p

    Sublethal caspase activation promotes generation of cardiomyocytes from embryonic stem cells.

    No full text
    Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources
    corecore