74 research outputs found

    Improved measurements of ICRF antenna input impedance at ASDEX upgrade during ICRF coupling studies

    Get PDF
    A new set of diagnostics has been implemented on ASDEX Upgrade to measure the input impedance of the ICRF antennas, in the form of a voltage and current probe pair installed on each feeding line of every antenna. Besides allowing the measurement of the reflection coefficient Gamma of each antenna port, the probes have two advantages: first, they are located close to the antenna ports (similar to 3 m) and thus the measurements are not affected by the uncertainties due to the transmission and matching network; second, they are independent of matching conditions. These diagnostics have been used to study the behavior of the ASDEX Upgrade antennas while changing the plasma shape (low to high triangularity) and applying magnetic perturbations (MPs) via saddle coils. Scans in the separatrix position R-sep were also performed. Upper triangularity delta(o) was increased from 0.1 to 0.3 (with the lower triangularity delta(o) kept roughly constant at 0.45) and significant decreases in vertical bar Gamma vertical bar (up to similar to 30%, markedly improving antenna coupling) and moderate changes in phase (up to similar to 5 degrees) off on each feeding line were observed approximately at delta(o) >= 0.29. During MPs (in similar to 0.5 s pulses with a coil current of 1 kA), a smaller response was observed: 6% - 7% in vertical bar Gamma vertical bar, with changes in phase of 5 apparently due to R p scans only. As 1 is usually in the range 0.8 - 0.9, this still leads to a significant increase in possible coupled power. Numerical simulations of the antenna behavior were carried out using the FELICE code; the simulation results are in qualitative agreement with experimental measurements. The results presented here complement the studies on the influence of gas injection and MPs on the ICRF antenna performance presented in [4]

    Iron metallurgy of the Xianbei period in Tuva (Southern Siberia)

    Get PDF
    We present results of the complex investigation of large-scale iron production at the site of Katylyg 5 (Tuva, Southern Siberia) dating to 3rd-4th c. AD. The excavations have uncovered nine trapezoid underground smelting furnaces, a tonne of smelting slag, smithing remains and a charcoal production zone. The investigation of slag by Optical microscopy, SEM-EDS and ICP-MS confirms the performance of smelting and smithing operations at the site, and also suggests that the smelted ore was magnetite, associated with quartz. The presence of copper (bronze) prills in most of the smithing slag indicates that copper was worked alongside iron in the smithing hearths. The spatial division of the site into three different production zones (smelting, smithing and charcoalproduction) suggests a well-organized and self-sufficient industry, that was probably tightly controlled throughout all stages of the chaîne op´eratoire. The trapezoid furnaces identified at Katylyg, are also known from Cis-Baikal region where they date from the end of the 1st millennium BCE and throughout most of the 1st millennium AD. This suggests that the technology of trapezoid furnaces, along with the Kokel culture to which they are attributed, likely emerged in Tuva with the migrations from the Baikal region due to the westward Xianbei expansion during 1st-3rd c. AD

    ОСОБЕННОСТИ ФОРМИРОВАНИЯ ТОНКИХ ПЛЕНОК КРЕМНИЯ, ОСАЖДАЕМЫХ МАГНЕТРОННЫМ РАСПЫЛЕНИЕМ

    Get PDF
    The surface morphology and optical properties of Si coatings formed by magnetron sputtering were studied using atomic force microscopy, scanning electron microscopy, and spectrophotometry methods. The possibility to influence the surface morphology of coating (filamentous structures and/or round holes) and the location of maxima and minima in reflectance and transmittance via a controllable variation of magnetron sputtering regimes (substrate temperature and bias potential) is shown. Методами атомно-силовой и сканирующей электронной микроскопии, а также спектрофотометрии исследованы морфология поверхности и оптические характеристики тонких Si-покрытий, сформированных методом магнетронного распыления. Показано, что при контролируемой вариации технологических параметров магнетронного распыления таких, как температура подложки и потенциал смещения, можно менять морфологию поверхности пленок Si. Для некоторых режимов осаждения обнаружено появление на поверхности нитевидных структур и/или круглых углублений, изменения положения минимумов и максимумов в оптических спектрах отражения и пропускания.

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    No full text
    Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests

    Phase relations of arsenian pyrite and arsenopyrite

    No full text
    Arsenian pyrite containing above 1 wt% As plays a crucial role in deposition and deportment of Au and other chalcophile elements. The importance of arsenian pyrite led to theoretical and experimental studies that examined properties and genesis of the mineral; however, the interpretation of the phase relations between arsenian pyrite and arsenopyrite is conflicting. In this contribution, we present the results of a review of the experimental studies that have investigated the crystallisation of pyrite in As-bearing systems, a summary of As content in pyrite coexisting with arsenopyrite in 37 deposits and the composition of arsenian pyrite in deposits with little or no arsenopyrite. The review demonstrates that the previous experimental studies that attempted to achieve equilibrium between pyrite and arsenopyrite observed from <1 to 4.7 wt% As in pyrite. The literature survey of the assemblages of pyrite and arsenopyrite shows that pyrite crystallising together with arsenopyrite commonly has a very heterogeneous composition with As content varying from below detection to about 10 wt% As and no clear discontinuities were observed across this range. In the deposits without arsenopyrite, arsenic content in pyrite can reach 20 wt% As. We consider three principal scenarios of the relations of arsenian pyrite and arsenopyrite: (A) Pyrite with high As content is stable in equilibrium with arsenopyrite. Low-As pyrite coexisting with arsenopyrite is a product of disequilibrium crystallisation; (B) a scenario of control of As content in pyrite coexisting with arsenopyrite by thermodynamic parameters including temperature, pressure, the activity of components and fluid composition and (C) a scenario where arsenian pyrite is a metastable mineral. The observations are inconsistent with a model of 5–6 wt% As in pyrite coexisting with arsenopyrite in equilibrium (scenario A). The stability range of the assemblage of pyrite and arsenopyrite constrains the thermodynamic control on the composition of pyrite crystallising in equilibrium with arsenopyrite (scenario B). The scenario of metastable crystallisation of arsenian pyrite (C) proposes formation of the mineral by fast growth from oversaturated fluids with As content controlled by surface adsorption and can explain such features as sector zoning of the mineral and the apparent negative temperature dependence of the solubility. The data phase relations of arsenian pyrite highlight the need for new experimental studies, and suggest that the scenario of disequilibrium phase relations of arsenian pyrite should be considered for interpretation of natural assemblages
    corecore