33 research outputs found

    Swinging a sword: how microtubules search for their targets

    Get PDF
    The cell interior is in constant movement, which is to a large extent determined by microtubules, thin and long filaments that permeate the cytoplasm. To move large objects, microtubules need to connect them to the site of their destination. For example, during cell division, microtubules connect chromosomes with the spindle poles via kinetochores, protein complexes on the chromosomes. A general question is how microtubules, while being bound to one structure, find the target that needs to be connected to this structure. Here we review the mechanisms of how microtubules search for kinetochores, with emphasis on the recently discovered microtubule feature to explore space by pivoting around the spindle pole. In addition to accel- erating the search for kinetochores, pivoting helps the microtubules to search for cortical anchors, as well as to self-organize into parallel arrays and asters to target spe- cific regions of the cell. Thus, microtubule pivoting con- stitutes a mechanism by which they locate targets in different cellular contexts

    Dynein, microtubule and cargo: a ménage à trois

    Get PDF
    To exert forces, motor proteins bind with one end to cytoskeletal filaments, such as microtubules and actin, and with the other end to the cell cortex, a vesicle or another motor. A general question is how motors search for sites in the cell where both motor ends can bind to their respective binding partners. In the present review, we focus on cytoplasmic dynein, which is required for a myriad of cellular functions in interphase, mitosis and meiosis, ranging from transport of organelles and functioning of the mitotic spindle to chromosome movements in meiotic prophase. We discuss how dynein targets sites where it can exert a pulling force on the microtubule to transport cargo inside the cell

    A divide and conquer strategy for the maximum likelihood localization of low intensity objects

    Get PDF
    In cell biology and other fields the automatic accurate localization of sub-resolution objects in images is an important tool. The signal is often corrupted by multiple forms of noise, including excess noise resulting from the amplification by an electron multiplying charge-coupled device (EMCCD). Here we present our novel Nested Maximum Likelihood Algorithm (NMLA), which solves the problem of localizing multiple overlapping emitters in a setting affected by excess noise, by repeatedly solving the task of independent localization for single emitters in an excess noise-free system. NMLA dramatically improves scalability and robustness, when compared to a general purpose optimization technique. Our method was successfully applied for in vivo localization of fluorescent proteins

    Dynein, microtubule and cargo: a ménage à trois

    Get PDF
    To exert forces, motor proteins bind with one end to cytoskeletal filaments, such as microtubules and actin, and with the other end to the cell cortex, a vesicle or another motor. A general question is how motors search for sites in the cell where both motor ends can bind to their respective binding partners. In the present review, we focus on cytoplasmic dynein, which is required for a myriad of cellular functions in interphase, mitosis and meiosis, ranging from transport of organelles and functioning of the mitotic spindle to chromosome movements in meiotic prophase. We discuss how dynein targets sites where it can exert a pulling force on the microtubule to transport cargo inside the cell

    Push-me-pull-you: how microtubules organize the cell interior

    Get PDF
    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces

    Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells

    Get PDF
    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization

    Bundling, sliding, and pulling microtubules in cells and in silico

    Get PDF
    Microtubules and other proteins self-organize into complex dynamic structures such as the mitotic spindle, which separates the chromosomes during cell division. Much is known about the individual molecular players involved in assembly and positioning of the mitotic spindle, but how they act together to generate the often unexpected behavior of the whole microtubule system is not understood. Two recent papers use a combination of experimental (imaging) and theoretical (computer simulation) methods to explore the formation of bipolar linear microtubule arrays in fission yeast and the oscillatory movement of the mitotic spindle in the nematode worm. In the simulation approach, the rules for the interactions of the components (microtubules and microtubule-associated proteins) are specified and the evolution of the system is followed, with the aim of identifying the minimal set of components that can mimic the real system. The work on fission yeast concludes that bipolar microtubule structures can arise from self-organization of microtubules through nucleators, bundlers, and sliders, without a requirement for a special microtubule-organizing center. The work on the worm embryo suggests that both the positive feedback that drives oscillations and the centering force that limits their amplitude may arise from microtubule pulling forces. The systems approach exemplified by these papers should stimulate new experiments aimed at discovering the principles of cellular organization

    Dynein, microtubule and cargo: a ménageà trois How motors generate large forces in the cell

    No full text
    Abstract To exert forces, motor proteins bind with one end to cytoskeletal filaments, such as microtubules and actin, and with the other end to the cell cortex, a vesicle or another motor. A general question is how motors search for sites in the cell where both motor ends can bind to their respective binding partners. In the present review, we focus on cytoplasmic dynein, which is required for a myriad of cellular functions in interphase, mitosis and meiosis, ranging from transport of organelles and functioning of the mitotic spindle to chromosome movements in meiotic prophase. We discuss how dynein targets sites where it can exert a pulling force on the microtubule to transport cargo inside the cell
    corecore