64 research outputs found

    Nuclear g-Factor of the 275.4-keV 5- Isomeric State in 212At

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Nuclear g-Factor of the 2972 keV Isomer in 130Xe

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    In-Beam Gamma-Ray Spectroscopy of 95Ru

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Implantation of Radioactive 119Sb

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Decay of 59zn studied by ISOL

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Neutrino mixing and leptonic CP violation from S 4 flavour and generalised CP symmetries

    Get PDF
    We consider a class of models of neutrino mixing with S4 lepton flavour symmetry combined with a generalised CP symmetry, which are broken to residual Z2 and Z2 7 HCP\u3bd symmetries in the charged lepton and neutrino sectors, respectively, HCP\u3bd being a remnant CP symmetry of the neutrino Majorana mass term. In this set-up the neutrino mixing angles and CP violation (CPV) phases of the neutrino mixing matrix depend on three real parameters \u2014 two angles and a phase. We classify all phenomenologically viable mixing patterns and derive predictions for the Dirac and Majorana CPV phases. Further, we use the results obtained on the neutrino mixing angles and leptonic CPV phases to derive predictions for the effective Majorana mass in neutrinoless double beta decay

    Probing non-standard interactions at Daya Bay

    Get PDF
    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude
    corecore