Implantation of Radioactive 119Sb | 著者 | Fujioka M., Takashima M., Matsumoto A., | |-------------------|---| | | Iura K., Tanaka E., Arai Y., Ishimatsu T. | | journal or | CYRIC annual report | | publication title | | | volume | 1980 | | page range | 125-127 | | year | 1980 | | URL | http://hdl.handle.net/10097/48587 | ## V. 23 Implantation of Radioactive 119 Sb Fujioka M., Takashima M.*, Matsumoto A.*, Iura K.*, Tanaka E.*, Arai Y.* and Tshimatsu T.* Cyclotron and Radioisotope Center, Tohoku University Department of Physics, Faculty of Science, Tohoku University* Implantation of radioisotopes combined with internal-conversion spectroscopy is giving a unique method in solid-state physics and in chemistry in that the contact density of valence electron can be separated from the core contributions. 1,2) Such a project is in progress and up to now implantation of 119 Sb (11 ₂ = 38 h) has been conducted; the decay of this nucleus leads to the Mössbauer transition of 23.8 keV in 119 Sn. A natural Sn metal target was irradiated for several hours by an α beam from the cyclotron at $\rm E_{\alpha}$ = 45 MeV and $\rm I_{\alpha}$ ~ 15 $\rm \mu A$. The target was welded onto a copper plate in vacuum; the copper plate was cooled during bombardment. After cooling short-lived activities for 1 day the target surface corresponding to the thickness of α -particle penetration (~0.5 mm) was scraped off using a "target scraper" as shown in Fig. 1. From the sample of irradiated Sn (\sim 1 g) 119 m Te $(T_{1/2} = 4.6 \text{ d})$ produced mainly by $^{118}\text{Sn}(\alpha, 3n)^{119m}$ Te was chemically separated as explaned in Fig. 2. After waiting 4 days for the daughter nuclide 119 Sb to grow from $^{119\text{m}}\text{Te}$, ^{119}Sb was separated from the Te fraction (milking); see Fig. 2. From the Sb fraction, 119 Sb together with stable Sb carrier was electroplated onto a Pt foil of 20 μm thickness or a Pt wire of 25 μm diameter, and the latter was put into the oven of a Nielsen-type ion source of the electromagnetic isotope separator of this center. The 119Sb was separated and implanted at 60 kV in the collector chamber of the separator onto a Sn foil. The total implantation efficiency of 119 Sb was measured using a pure-germanium low-energy photon spectrometer; the maximum efficiency was 0.5 % but it was not stable and changed from time to time. The efficiency was found to depend strongly on the mass-separated current for A = 119, the main part of which is probably due to 119 Sn from the target. A typical implantation process monitored by the 121Sb+ current is shown in Fig. 3. The intensity of implanted 119 Sb was ~10 μ Ci. The Mössbauer spectrum of the implanted sample was measured for the 23.8 keV gamma rays in \$^{119}\$Sn at a liquid-nitrogen temperature. After a thermal annealing of the implanted sample for 40 sec at 150°C in an Ar atmosphere, a Mössbauer absorption dip was obtained against a standard absorber of CaSnO3, indicating a substitutional site of the implanted \$^{119}\$Sb in Sn metal. The study of Mössbauer measurement is still in progress in order to define a good condition of annealing. In view of the possible mixing in implantation from stable 119 Sn of the target, we are also trying to produce 119 Sb by the Sb(p, 3n) 119m Te reaction in which the stable isotopes of Sb have A = 121 and 123 and such a possibility of mixing can be excluded. ## References - 1) Spijkervet W. J. J. and Pleiter F., Hyperfine Interactions 7 (1979) 285. - 2) Spijkervet W. J. J., Pleiter F. and de Waard H., to be published (Calibration of the Isomer Shift of ⁸³Kr). - 3) De Waard H., private communication (Sept., 1980). Fig. 1. Target Scraper. The top of the target is scraped off before irradiation, and a spacer of appropriate thickness is placed below the target plate to define the thickness of scraping after irradiation. Fig. 2. Block diagram of chemical separation of $^{119\,\mathrm{m}}\mathrm{Te}$ from the Sn target and that of $^{119}\mathrm{Sb}$ from the Te fraction. Fig. 3. Monitoring of the implantation with the current of stable $^{121}\text{Sb}^+$. In this example the total implantation efficiency of ^{121}Sb was 0.9 % whereas that of ^{119}Sb was 0.3 %.