In-Beam Gamma-Ray Spectroscopy of 95Ru | 著者 | lura K., Kawamura N., Sakai H., Motoki T., | |-------------------|--| | | Hayashibe S., Fujioka M., Ishimatsu T. | | journal or | CYRIC annual report | | publication title | | | volume | 1983 | | page range | 26-28 | | year | 1983 | | URL | http://hdl.handle.net/10097/49158 | ## I. 7 In-Beam Gamma-Ray Spectroscopy of 95Ru Iura K., Kawamura N., Sakai H., Motoki T., Hayashibe S., Fujioka M.* and Department of Physics, Faculty of Science, Tohoku University Cyclotron and Radioisotope Center, Tohoku University* The nuclear structure of $^{95}_{44}\mathrm{Ru}_{51}$ has been investigated in several experiments. The information obtained is, however, still poor; the nuclear spins and parities of its levels are uncertain except for the ground $5/2^+$ state and the 0.779-MeV first-excited $1/2^+$ state 1 , and only four in-beam γ -rays from $^{95}_{81}$ Ru have been reported in a study of the $^{92}_{80}(\alpha,\eta\gamma)^{95}_{81}$ Ru reaction. The present experiment was undertaken with the aims of finding new γ -rays from $^{95}_{81}$ Ru through the $^{94}_{80}(\alpha,3\eta\gamma)^{95}_{81}$ Ru reaction and studying the nuclear structure of $^{95}_{81}$ Ru. The experiment was performed with an α -particle beam from the CYRIC cyclotron. The Target used was a self-supporting metallic 94 Mo foil of 3 mg/cm² thickness isotopically enriched to 93.9 %. Excitation functions of γ -rays and γ - γ coincidences have been measured so far. Higher energy γ -rays were measured with a 90-cm³ Ge(HP) and a 90-cm³ Ge(Li) detector, each having an energy resolution of 2.2-2.5 keV (FWHM) for the 60 Co 1333-keV line. Lower energy γ -rays were measured with a 5-cm³ Ge(HP) detector having an energy resolution of 0.6 keV for the 57 Co 122-keV line. Relative yields of γ -rays from the $^{94}\text{Mo}(\alpha,3n\gamma)^{95}\text{Ru}$ reaction were measured at α -particle energies of 30, 35, 40 and 45 MeV, and an optimum α -particle energy of 40 MeV has been obtained to populate the excited states in ^{95}Ru . A singles γ -ray spectrum at $E_{\alpha}=40$ MeV measured with the 90-cm^3 Ge(Li) detector is shown in Fig. 1. The γ - γ coincidence measurements were made with two combinations of detectors, i.e. 90-cm^3 Ge(HP) — 90cm^3 Ge(Li) and 90-cm^3 Ge(Li) — 5-cm^3 Ge(HP). Fig. 2 shows a coincidence spectrum measured with the 90-cm^3 detector gated on the 255-keV γ -ray detected with the 90-cm^3 Ge(HP) detector. From the γ -ray excitation functions and γ - γ coincidence relations, thirteen γ -rays (E $_{\gamma}$ = 207, 224, 239, 247, 255, 282, 284, 292, 313, 410, 622, 927 and 1292 keV) were identified as the γ -rays from the 94 Mo(α ,3n γ) 95 Ru reaction in addition to the four (E $_{\gamma}$ = 255, 678, 941 and 1346 keV) previously reported in the study of the 92 Mo(α ,n γ) 95 Ru reaction. $^{2)}$ The 255 keV line has been confirmed to be a doublet from the evidence of coincidence between two 255 keV γ -rays. Among the thirteen γ -rays, three (E $_{\gamma}$ = 410, 622 and 1292 keV) have been observed in a study of the β decay of 95 Rh. $^{3)}$ There is, however, a possibility that the 1292 keV γ -ray observed in the β -decay study comes from the transition different from the one that gives rise to the 1292 keV γ -ray observed in the present experiment, because we have not observed the 229 keV γ -ray which is expected to be detected when the 1292 keV γ -ray following the β decay of 95 Rh is detected. A detailed analysis of the $\gamma\!-\!\gamma$ coincidence data and angular distribution measurements of the $\gamma\!-\!rays$ are in progress. ## References - 1) Luksch P., Nuclear Data Sheets 38 (1983) 1. - 2) Lederer C. M., Jaklevic J. M. and Hollander J. M., Nucl. Phys. <u>A169</u> (1971) 489. - 3) Weiffenbach C., Gujrathi S. C. and Lee J. K. P., Can. J. Phys. <u>53</u> (1975) Fig. 1. The singles γ -ray spectrum from the bombardment of ^{94}Mo with 40 MeV α -particles measured with a 90 cm 3 Ge(HP) detector. Fig. 2. The $\gamma-\gamma$ coincidence spectrum from the $^{94}\text{Mo}(\alpha,3n\gamma)^{95}\text{Ru}$ reaction measured with a 90 cm 3 Ge(Li) detector. The gate is set on the 255 keV γ -ray measured with a 90 cm 3 Ge(HP) detector.