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Abstract

Background: Synovial sarcoma (SS) is a soft tissue sarcoma of unknown histogenesis. Most metastatic or
unresectable cases are incurable. Novel antitumor agents and precise prognostication are needed for SS patients.
The protein forkhead box M1 (FOXM1), which belongs to the FOX family of transcription factors, is considered to be
an independent predictor of poor survival in many cancers and sarcomas, but the prognostic implications and
oncogenic roles of FOXM1 in SS are poorly understood. Here we examined the correlation between FOXM1
expression and clinicopathologic and prognostic factors, and we investigated the efficacy of FOXM1 target therapy
in SS cases.

Methods: Immunohistochemical study of 106 tumor specimens was conducted to evaluate their
immunohistochemical expression of FOXM1. An in vitro study examined the antitumor effect of the FOXM1
inhibitor thiostrepton and small interference RNA (siRNA) on two SS cell lines. We also assessed the efficacy of the
combined use of doxorubicin (DOX) and thiostrepton.

Results: Univariate and multivariate analyses revealed that FOXM1 expression was associated with poor prognosis
in SS. The cDNA microarray analysis using clinical samples revealed that the expression of cell cycle-associated
genes was correlated with FOXM1 expression. FOXM1 inhibition by thiostrepton showed significant antitumor
activity on the SS cell lines in vitro. FOXM1 interruption by siRNA increased the chemosensitivity for DOX in both
SS cell lines.

Conclusion: FOXM1 expression is a novel biomarker, and its inhibition is a potential treatment option for SS.
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Background
Synovial sarcoma (SS) is a soft tissue sarcoma of unknown
histogenesis, occurring most frequently in adolescents and
young adults. It is mainly classified into three histological
subtypes: the biphasic type composed of both epithelial
and spindle-cell components, the monophasic fibrous type
composed of either an epithelial or spindle-cell compo-
nent, and the poorly differentiated type [1]. SS has a
genetic event, the t(X:18) translocation-mediated fusion of
the SS18 gene on chromosome18q 11 to either SSX1,

SSX2, or rarely SSX4 gene located on chromosome
(p11.2;q11.2) [2]. The reported 5-year survival rates of
patients with SS range from 64 to 77 % [3–6]. Most
metastatic or relapsed diseases remain incurable, Efficacy
of adjuvant chemotherapy in resected primary SS cases
is still unclear [6]. Novel antitumor agents and precise
prognostication are essential to improve the survival of
SS patients.
The protein forkhead box M1 (FOXM1), a member of

the FOX family of transcription factors, is widely
expressed in embryonic tissues [7, 8]. Terminally differ-
entiated nonproliferating tissues display relatively low
levels of FOXM1 expression [9]. FOXM1 regulates a
wide spectrum of tumor progression processes [10].
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Increased levels of FOXM1 expression have been detected
in many different types of human cancer [11–21] and
sarcoma such as rhabdomyosarcoma [22], Ewing sarcoma
[23], malignant peripheral nerve sheath tumor [24], and
osteosarcoma [25, 26]. Silencing FOXM1 expression sup-
pressed the proliferation of both cancer [16, 18, 22] and
sarcoma cell lines [22, 26]. In various carcinoma cell lines,
FOXM1 was also involved in resistance to chemotherapy
drugs such as doxorubicin (DOX) [27], which is a fre-
quently used antitumor agent against soft tissue sar-
coma. The inhibition of FOXM1 may thus have the
potential to be a therapeutic target for many malignan-
cies. Both the prognostic impact of FOXM1 expression
and the effectiveness of FOXM1 inhibition in SS remain
to be clarified.
Here, we conducted a clinicopathologic and prognostic

analysis of the FOXM1 expression in a series of 106
clinical specimens of SS, and a cDNA microarray ana-
lysis in 11 frozen samples. Using small interference RNA
(siRNA), we then tested the involvement of FOXM1 in
tumor progression and the acquisition of drug resistance.
We also tested the efficacy of the combined use of DOX
and FOXM1 inhibition (by thiostrepton and siRNA) in SS
cell lines in vitro.

Methods
Patients and clinical information
We examined 106 SS patients registered in the De-
partment of Anatomic Pathology, Graduate School of
Medical Sciences, Kyushu University, Japan, between
1990 and 2014. Each tumor had been classified histologi-
cally into the monophasic fibrous, biphasic, or poorly
differentiated type according to the most recent World
Health Organization classification [28] including the
examination of SS18-SSX1 and SS18-SSX2 fusion tran-
scripts. The extents of necrosis and mitosis were evalu-
ated according to the French Federation of Cancer
Centers (FNCLCC) grading system [28]. For the staging
of the primary tumors, the latest American Joint Com-
mittee on Cancer (AJCC) staging system was used [29].
Surgical margins were available in 49 patients (39 cases,
wide marginal resection; 9 cases, marginal resection; 2
cases, intralegional resection).
We also analyzed the FOXM1 expression and EFS rate

in 19 patients who had undergone pre- or/and post-
operative chemotherapy. Eighteen of these patients had
a wide margin; one patient underwent surgical resection,
and one patient was treated with heavy ion irradiation.
Most of the chemotherapy regimens were a single use
of DOX or a combination of DOX and ifosfamide.
This study was conducted in accordance with the
principles embodied in the Declaration of Helsinki,
and was approved by the Ethics Committee of Kyushu
University (No. 26–49).

Cell lines
We analyzed SYO-1 [30] was established by Dr. Kawai
and HS-SY-II [31] was established by Dr. Sonobe as
synovial sarcoma cell lines. These cell lines were authen-
ticated by confirming the expression of pathognomonic
SS18-SSX fusion genes by reverse transcriptase polymer-
ase chain reaction (RT-PCR) in October 2012. All cell
lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10 % fetal bovine serum
(FBS) plus penicillin.

Drugs
Doxorubicin (DOX) was obtained from Cell Signaling
Technology (Tokyo), and Thiostrepton was obtained
from Millipore/EMD (Billerica, MA, USA). Both drugs
were dissolved in DMSO (Sigma-Aldrich, St. Louis, MO)
and were used at the indicated concentrations.

Detection of fusion gene transcripts
We performed an SS18-SSX fusion assay based on the
reported primers [32] that specifically amplify the fusion
gene transcripts of SS18-SSX1 and SS18-SSX2. Each
PCR product (5 μL) was loaded onto a 2 % agarose gel
with ethidium bromide and visualized under UV il-
lumination. The PCR products were also evaluated by
direct sequence analysis using the Big-Dye terminator
method (version 1.1; Applied Biosystems, Foster City,
CA) to confirm the breakpoints of fusion transcripts.

Immunohistochemical study
All 106 formalin-fixed, paraffin-embedded specimens
were cut at 3 μm. Antigen retrieval was carried out by
boiling the slides with Target retrieval solution (TRS;
Dako, Carpinteria, CA). The primary antibody was mono-
clonal anti-human FOXM1 antibody (R&D Systems, Min-
neapolis, MN) diluted at 1:300. All immune complexes
were visualized by the EnVision™ System Detection
system (Dako).
We used biopsy specimens for the evaluation of FOXM1

expression if the patients received pre-operative chemo-
therapy. For FOXM1, immunoreactivity was defined as
cells showing nuclear staining with/without cytoplasmic
staining patterns in the tumor tissue with minimal back-
ground staining. Tumors with a strong staining intensity
in >10 % of the tumor cells were recorded as having posi-
tive immunoreactivity for FOXM1 based on a reported
method [11, 12]. The serial sections were also immuno-
stained with anti-Ki-67 antibody (M 7240, 1:100; Dako
Glostrup, Denmark) using the standard procedure. The
Ki-67-labeling index was calculated as described [33].

Gene expression profiling of cDNA micro array
We conducted cDNA micro array analysis in 11 frozen
samples obtained from primary SS cases. For the Oligo
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DNA microarray analysis, 3D-Gene Human Oligo chip
25 k (Toray Industries, Tokyo) was used (25,370 distinct
genes). For efficient hybridization, this microarray has three
dimensions and is constructed with a well as the space
between the probes and cylinder-stems with 70-mer oligo-
nucleotide probes on the top. Total RNA was labeled with
Cy5 using the Amino Allyl MessageAMP™ II aRNA Ampli-
fication Kit (Applied Biosystems). The Cy5-labeled aRNA
pools and hybridization buffer, and hybridized for 16 h.

The hybridization was performed using the supplier’s
protocols (www.3d-gene.com). Hybridization signals were
scanned using a ScanArray Express Scanner (PerkinElmer,
San Jose, CA), and processed by GenePixPro software, ver.
5.0 (Molecular Devices, Sunnyvale, CA). The raw data of
each spot was normalized by subtraction with a mean
intensity of the background signal determined by all blank
spots’ signal intensities of 95 % confidence intervals (CI).
The signals detected for each gene were normalized by

A

B

C

Fig. 1 a Immunohistochemical results for FOXM1: Monophasic fibrous type (left) and biphasic type (right). Immunostaining for antibody was
recognized in the nuclei. b Quantitative RT-PCR and immunohistochemical stain for FOXM1 in clinical samples. The RT-PCR values are plotted as:
1 × (cross threshold [Ct] FOXM1 − Ct GAPDH). High Ct values indicate high gene expression, and vice versa. The results are the means ± SD.
*P < 0.05 by t-test. c Correlation of FOXM1 expression and MIB-1 labeling index in clinical specimens. The MIB-1 labeling index was significantly
high in the FOXM1 expression cases. The results are means ± SD. *P < 0.05 by t-test
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Table 1 Clinicopathologic parameters, FOXM1 expression and survival analysis

Variable No. of
patients

Analyzed groups P-value FOXM1

OS EFS Positive Negative P-value

Sex

Male 44 13 31

Female 62 Male vs. female 0.0028* 0.3047 17 45 0.811

Age

< 20 19 4 15

≥ 20 87 20 < vs. ≥20 0.0189* 0.2499 26 61 0.4279

Chemotherapy

Yes 25 6 19

No 25 Yes vs. No 0.3431 0.8037 4 21 0.4783

N.A. 56

Fusion gene type

SS18-SSX1 30 11 19

SS18-SSX2 14 SSX1 vs. SSX2 0.6271 0.8581 3 11 0.3736

N.A. 62

Depth

Superficial 13 5 8

Deep 91 Deep vs. Superficial 0.4441 0.9057 25 66 0.4243

N.A. 2

Size,cm

< 5 40 8 32

5≥ 62 <5 vs. 5≤ 0.0012* 0.0335* 22 40 0.0885

N.A. 4

Histological subtype

Mono 69 22 47

Bi 26 Mono vs. bi 0.4225 0.9701 3 23 0.0335*

Poor 3 1 2

Undetermined 8

Necrosis

None 56 13 43

≤ 50 % 26 Necrosis (+) vs. (−) <0.001* 0.0012* 9 17 0.1526

> 50 % 15 6 9

N.A. 9

Mitotic count

≥ 10/10HPF 70 12 58

< 10/10HPF 31 ≥10 vs. <10/10HPF 0.0344* 0.0056* 17 14 0.0002*

N.A. 5

AJCC stage

II 39 II vs. III 0.0304* 0.3734 11 28 0.72

III 44 III vs. IV <0.001* - 14 30 0.6579

IV 13 5 8

N.A. 10

FNCLCC

2 69 18 51
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the global normalization method (the median of the de-
tected signal intensity was adjusted to 25). Genes corre-
lated with FOXM1 were extracted by the hierarchal
clustering method. We defined “correlate” as a correlation
coefficient (CC) > 0.828. We also conducted a gene ontol-
ogy (GO) analysis using the Gene Ontology Consortium
(http://geneontology.org/).

siRNA
Both SYO-1 and HS-SY-II cells were transfected with On-
Target plus Smart Pool siRNAs FOXM1 (Dhamacon, CO,
USA) and On-Target plus Non-targeting Pool (Dhamacon,
CO, USA) as a control, using Lipofectamine RNA imax
(Invitrogen, MA, USA) according to the manufacturer’s
protocols. The introduction of the siRNA for FOXM1 was
confirmed by qRT-PCR and immunoblotting.

TaqMan PCR to detect mRNA quantity of FOXM1
Total RNA was extracted using miRNeasy Mini kit (Qia-
gen). Five micrograms of RNA from each sample were
reverse-transcribed using Quantitect Reverse Transcrip-
tion Kit (Qiagen) in order to prepare first-strand cDNA.
We performed a quantitative RT-PCR for FOXM1 and
analyzed using TaqMan assay reagents (FOXM1
Hs00170471_m1.; GAPDH Hs99999905_m1.; Applied
Biosystems) and an ABI Prism 7700 Sequence Detection
system (Applied Biosystems). RNA was obtained from
23 frozen samples and cell lines, using Qiagen mi RNA
extraction kit (Qiagen, Venlo, Netherlands). The RNA
extraction and PCR reaction were carried out according
to the manufacturer’s protocol. The obtained data were
standardized using the data of the housekeeping gene
GAPDH. All of the reactions for each sample were per-
formed in at least triplicate. The data were averaged
from the values obtained in each reaction.

Western blot
The cells were washed twice with ice-cold phosphate-
buffered saline (PBS), scraped, and collected in a micro-
centrifuge tube. Whole cell lysates were prepared from the
cell lines. Anti-FOXM1 (1:200 dilution) antibody (R&D
Systems). Anti-human actin mouse monoclonal antibody
(1:5000; Millipore) was used as a loading control. The

subsequent Western blot procedure was performed as
described [33].

Cell viability
Cell viability was assessed by an MTT assay using the Cell
Counting Kit 8 (CCK-8, Dojindo Molecular Technologies,
Rockville, MD) according to the manufacturer’s instruc-
tions and as described [33]. The absorbance at 450 nm
was measured by a microplate reader (Model 680, Bio-
Rad Laboratories) by spectrophotometry at 450 nm.

Drug treatment and cell proliferation assay of the
transfected cell lines
After 24-h siRNA transfection, the transfected cells were
seeded at 5000 cells per well in 96-well plates. For the
chemosensitivity assay, various concentrations of DOX
were added to the medium after 12-h incubation. After
another incubation for 72 h, the number of viable cells
in each well was measured.
For the proliferation assay, the number of viable cells in

each well was measured at 36, 48, 72, and 96 h after trans-
fection. Assays were conducted in triplicate and were
repeated at least three times in separate experiments.

Drug treatment and cell proliferation assay
SYO-1 and HS-SY-II cells were plated on 96-well plates
at a concentration of 5000 cells per well in serum-
containing growth medium. After a 12-h incubation,
cells were treated with carrier alone (0.01 % DMSO) as
non-treated control or with various concentrations of
DOX, thiostrepton, or thiostrepton + DOX for another
72 h. The resulting data are reported as the percentage
of cell viability in comparison to that of the respective
non-treated control group (100 %). Assays were con-
ducted in triplicate and were repeated at least three
times in separate experiments.

Statistical analysis
We used the chi-square test and the t-test as appropriate
to evaluate associations between two variables. The
Steel-Dwass multiple comparison test was applied to
compare the data of more than two groups. The survival
correlations are illustrated with Kaplan-Meier curves,

Table 1 Clinicopathologic parameters, FOXM1 expression and survival analysis (Continued)

3 23 2 vs. 3 <0.001* <0.001* 10 13 0.123

N.A. 14

FOXM1

Positive 30

Negative 76 Positive vs. negative 0.0128* 0.0043* - - -

AJCC American Joint Committee on Cancer, Bi biphasic synovial sarcoma, EFS event-free survival, FNCLCC French Federation of Cancer Centers, HPF high-power
fields, Mono monophasic synovial sarcoma, Poor poorly differentiated synovial sarcoma, NA not available, OS overall survival
*P < 0.05 by log-rank test or chi-square test
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and survival analyses were performed using the log-rank
test. In the multivariate analysis, a Cox proportional haz-
ards model was used to independent examine factors.
Two-sided P-values <0.05 were considered significant.

Results
Prognostic significance of FOXM1 expression in synovial
sarcoma patients
Survival data were available for overall survival (OS) in
103 patients, who were followed-up from 1 to 278
months (median, 85 months). The 5-year OS rate was
62 %. Data were available for event-free survival (EFS) in
70 patients, who had a follow-up ranging from 4 to 278
months (median, 81 months) and whose 5-year EFS rate
was 56 %.
Immunohistochemically, the positive expression of

FOXM1 was recognized in 28 of the 106 SS cases. SS
cells showed nuclear staining for FOXM1 antibodies
(Fig. 1a). The mRNA expressions of the samples that were
immunohistochemically positive for FOXM1 showed a sig-
nificantly higher mean cross threshold (mean, −2.95 ± 2.20)
compared to the immunohistochemically negative expres-
sion samples (mean, −5.64 ± 1.63; P = 0.002) (Fig. 1b). In
addition, the MIB-1 labeling index was significantly higher
in the FOXM1 expression cases (positive 29.3 ± 13.5 vs.
negative 16.9 ± 14.0, P = 0.0002) (Fig. 1c).
The clinicopathologic data and the results of the

survival analysis of all 106 patients are summarized in
Table 1. We evaluated the correlations between the im-
munohistochemical results and over-all (OS) or event-
free (EFS) survival. Immunopositivity for FOXM1 was
found to be a significant risk factor for adverse prognosis
(OS and EFS). The Kaplan-Meier survival curves for OS
and EFS are shown in Fig. 2a,b. Among the 19 patients
treated with chemotherapy, the 3 FOXM1 expression
cases had poor prognoses in EFS (Fig. 2c).
The following clinicopathologic variables were also re-

vealed to be significantly associated with poor prognosis:
large tumor size (>5 cm), the presence of tumor necrosis,
high mitotic activity (>10/10 HPF), advanced AJCC stage
(II vs. III and III vs. VI), sex (female) and age (>20 year).
The associations of the clinicopathological parameters
with FOXM1 are shown in Table 1. FOXM1 was signifi-
cantly associated with the histological subtype (monopha-
sic fibrous variant) and high mitotic activity (>10/10 HPF).
We also conducted a multivariate analysis for FOXM1

with clinicopathologic variables adjusted by sex, age and
AJCC surgical stage (II, III and IV) that were related to
poor prognosis in the univariate analysis. We excluded
tumor depth, tumor size, mitotic count, necrosis and
FNCLCC histological grade, because the AJCC surgical
stage is derived from these. The multivariate analysis
revealed that FOXM1 expression and AJCC staging are
significantly correlated with overall survival (Table 2).

Table 2 Multivariate analysis for immunohistochemical and
clinicopathological parameters

Multivariate analysis

Variable P-value (overall survival)

AJCC staging <0.0001*

age (20 < vs ≥20) 0.2819

Sex 0.5497

FOXM1 0.0302*

*P < 0.05 by Cox proportional hazards model

A

B

C

Fig. 2 Kaplan-Meier survival curves for the patients’ overall survival
(OS) and event-free survival (EFS) according to the results of the
immunohistochemical study for FOXM1: (a) OS, (b) EFS, and (c) EFS
for the 19 patients treated with chemotherapy
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Gene expression analysis in clinical samples
We conducted a cDNA microarray analysis in 11 fro-
zen samples, and the clustering analysis showed that
32 gene expressions were significantly correlated with
FOXM1 expression (CC >0.828). They are listed in
Table 3. The gene ontology (GO) analysis revealed
that GO terms that were involved in the cell cycle or
mitotic process were enriched in the cluster including
FOXM1 (Table 4). Raw data from the microarray
analysis are available on the website of the Gene
Expression Omnibus (accession no.GSE65532, http://
www.ncbi.nlm.nih.gov/geo/).

Antitumor effect of FOXM1 knockdown in SS cell lines
We knocked down FOXM1 in both cell lines by using
siRNA. The interruption of FOXM1 was confirmed by
Western blotting and TaqMan PCR in both cell lines
(Fig. 3a,b). Reduced cell proliferation was recognized
only in the SYO-1 cells, not in HS-SY-II (Fig. 3c). In-
creased sensitivity for DOX was observed in both cell
lines by FOXM1 interruption (Fig. 3d).

Antitumor effect of thiostrepton and DOX for SS cell lines
Compared to the untreated controls, decreased FOXM1
expressions were recognized in treated tumor cells by

Table 3 cDNA microarray data analysis: hierarchal cluster of gene expressions correlated with FOXM1 in 11 frozen SS samples
(correlation coefficient > 0.828)

Gene symbol Description

FBXO5 F-box only protein 5 (Early mitotic inhibitor 1)

TTK Dual specificity protein kinase TTK)(Phosphotyrosine picked threonine-protein kinase)(PYT)

CENPM Centromere protein M (CENP-M)(Proliferation-associated nuclear element protein 1)

KIF11 Kinesin-like protein KIF11 (Kinesin-related motor protein Eg5)

SGOL2 Shugoshin-like 2 (Tripin)

RBM12 Copine-1 (Copine I)

GINS2 DNA replication complex GINS protein PSF2 (GINS complex subunit 2)

CLSPN Claspin (hClaspin)(Hu-Claspin)

ASF1B Histone chaperone ASF1B (Anti-silencing function protein 1 homolog B)(hAsf1)(hAsf1b)

PRR11 Proline-rich protein 11

BIRC5 Baculoviral IAP repeat-containing protein 5 (Apoptosis inhibitor survivin)(Apoptosis inhibitor 4)

GTSE1 G2 and S phase-expressed protein 1 (B99 homolog)

C13orf3 Uncharacterized protein C13orf3

DIAPH3 Protein diaphanous homolog 3 (Diaphanous-related formin-3)(DRF3)

C16orf75 OB DNA-binding domain-containing protein C16orf175

NCAPD3 Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3)(hCAP-D3)

LMNB2 Lamin-B2

KIF23 Kinesin-like protein KIF23 (Mitotic kinesin-like protein 1)(Kinesin-like protein 5)

C15orf23 Putative TRAF4-associated factor 1

NCAPH Condensin complex subunit 2 (Non-SMC condensin I complex subunit H)(Barren homolog protein 1)

CDCA4 Cell division cycle-associated protein 4 (Hematopoietic progenitor protein)

NUF2 Kinetochore protein Nuf2 (hsNuf2)(hNuf2)(hNuf2R)(Cell division cycle-associated protein 1)

HCAP-G Condensin complex subunit 3

TOP2A TOP2A_HUMAN Isoform 2 of P11388

CDCA3 Cell division cycle-associated protein 3 (Trigger of mitotic entry protein 1)(TOME-1)

PBK Lymphokine-activated killer T-cell-originated protein kinase

NCAPG2 Condensin-2 complex subunit G2

CCNA2 Cyclin-A2 (Cyclin-A)

ZWINT ZW10 interactor

CENPN Centromere protein N (CENP-N)

KNTC2 Kinetochore protein NDC80 homolog

RFC5 Replication factor C subunit 5 (Activator 1 subunit 5)
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Western blotting (Fig. 4a). Thiostrepton dose-dependently
inhibited the cell proliferation for both the SYO-1 and HS-
SY-II SS cell lines (Fig. 4b). We also evaluated the effect on
the proliferation of cell lines treated with thiostrepton,
DOX, or their combination. We observed that the cell lines
treated with the combination of both drugs showed lower
proliferation than those treated with either drug individu-
ally (Steel-Dwass multiple comparison test, P < 0.05) (Fig. 4c
and d). and TaqMan PCR in both SS cell lines treated with
thiostrepton (Additional file 1: Figure S1).

Discussion
The expression of FOXM1 in clinical specimens has been
reported to be an adverse prognostic factor in many ma-
lignancies [11, 15–17, 19–21, 24]. In the present study’s
univariate analysis, FOXM1 expression was revealed to be
correlated with poor prognosis for OS and EFS among the
SS patients treated with chemotherapy, and the multivari-
ate analysis adjusted for surgical stage, sex and age showed
that FOXM1 expression was an independent prognostic
factor. Among the clinicopathological factors, high mi-
totic activity was strongly correlated with overexpres-
sion of FOXM1. Immunohistochemically, the MIB-1
labeling index was significantly high in the FOXM1
expression cases.
The cDNA microarray showed that 32 gene expres-

sions were significantly correlated with FOXM1 expres-
sion in clinical samples of SS. The GO analysis revealed
that many of these genes are involved in the cell cycle
and mitosis. Three genes (CCNA2 [34], KIF23 [35] and
CDCA3 [36]) involved mainly in controlling late cell-
cycle events in the G2 and M phases were among this
group. These three genes have the CHR (cell cycle genes
homology region) element in their promoter lesion [37],
and FOXM1 controls cell cycle-dependent gene expres-
sion through CHR elements [38]. The CHR, typically
located at or close to the transcriptional start site of a

cluster of genes at the G2-M transition, is coordinated
through promoter elements bounded by the dimerization
partner, RB-like, E2F and multi-vulval class B (DREAM)
and Myb-MuvB (MMB) transcriptional regulatory com-
plexes [38].
Topoisomerase IIα and survivin (BIRC5), which are

mainly involved in controlling early-phase cell-cycle
events, was also shown to correlate with FOXM1 by
cDNA microarray. Topoisomerase IIα plays a role in mi-
totic chromosome condensation and segregation, creat-
ing double-strand breaks in DNA [39]. In a mouse lung
tumogenesis model, FOXM1 directly bound to the topo-
isomerase IIα promoter region [40]. Oda et al. reported
that the survival of SS patients with a high expression of
topoisomerase IIα was worse than that of SS patients
with a lower expression [41].
Survivin forms a complex with chromosome passenger

proteins Aurora B kinase and inner centromere protein
(INCENP), where it plays a critical role in the localization
of the Aurora B kinase-INCENP complex to the inner
chromosomal region of centromeres at the early stages of
mitosis [42]. Interruption of FOXM1 reduced the survivin
expression in leukemia [21] and osteosarcoma [25] cell
lines and inhibited cell-cycle progression. Survivin also
associated with DNA damage response, it may facilitate
recruitment of repair proteins at sites of DNA damage
and inhibition of survivin mediate the increase chemosen-
sivity for DOX in leukemia cell line [43].
DOX is routinely available for sarcoma treatment in

many countries. The first-line chemotherapy for advanced,
metastatic or nonresectable soft tissue sarcoma is typically
based on DOX as a single agent or in combination with a
second drug such as ifosfamide [44].
The results of the present cDNA microarray analysis

supported our clinical and pathological finding that
FOXM1 expression was correlated with high mitotic activ-
ity, a high MIB-1 labeling index and poor prognosis in SS

Table 4 Gene ontology analysis: list of GO terms that were enriched in the cluster including FOXM1 compared with reference
genes (P < 5 × 10 − 14)

Term Sample frequency (27 genes) Background frequency (21,804 genes)

Mitotic cell cycle (GO:0000278) 21 763

Cell cycle (GO:0007049) 21 1251

Cell cycle process (GO:0022402) 19 972

Mitotic cell cycle process (GO:1903047) 17 685

Nuclear division (GO:0000280) 15 420

Organelle fission (GO:0048285) 15 446

Cell cycle phase (GO:0022403) 13 287

Biological phase (GO:0044848) 13 291

Mitotic nuclear division (GO:0007067) 13 317

M phase (GO:0000279) 11 216

Mitotic M phase (GO:0000087) 11 216
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patients. These findings indicated that FOXM1 is reliable
biomarker for adverse prognosis in SS patients.
FOXM1 interruption by siRNA caused a reduction in

cell proliferation, significantly so in the cell line SYO-1.
FOXM1 interruption caused decreasing viability treated
with DOX in both the SYO-1 and HS-SY-II cells. DOX
treatment of cancer cells created double-stranded DNA
breaks, and DNA repair genes were induced to rescue

the cells from the DNA damage. FOXM1 regulates sur-
vivin and other DNA repair genes [45] (XRCC1 and
BRCA2) and is involved in chemoresistance via a DNA
repair pathway. Other investigators reported that the
interruption of FOXM1 expression in breast cancer cells
sensitized the cells to DOX [46].
DOX induces acute and chronic toxicities, and treat-

ment options are needed to reduce the dosages of DOX

A

B

C

D

Fig. 3 Proliferation and chemosensitivity assay results in SS cell lines with FOXM1 knockdown. a The cell lines were transduced with FOXM1
siRNA or a nontargeting control. The real-time quantitative PCR for FOXM1 showed a reduction in FOXM1 transcript at 24 h after transfection.
b Western blotting demonstrated that the cell lines transduced with FOXM1 had significantly reduced levels of FOXM1 protein at 48 h after
transfection. c Cell lines with FOXM1 siRNA compared to nontargeting control. Significantly decreased proliferation was recognized in the SYO-1
cells at 96 h after transfection. d SiRNA targeting FoxM1 transfected cells had higher sensitivity for DOX, compared with the control. Data are
presented as mean ± SD for three independent experiments. *P < 0.05 by by t-test. N.S., not significant
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and enhance its therapeutic efficacy [44]. Here we dem-
onstrated that FOXM1 expression has important roles in
cell proliferation and chemoresistance in SS cell lines.
We propose that FOXM1 could be a potential thera-
peutic target for SS.
We also observed that in two SS cell lines, thiostrep-

ton, known as a FOXM1 inhibitor [47], reduced both
the number of viable cells in a dose-dependent manner
and the levels of FOXM1 protein and mRNA expression.
Reduced FOXM1 expression in protein and mRNA
levels was recognized at low-toxic concentrations of
thiostrepton in the HS-SY-II cells (1 μM), and the inter-
ruption of FOXM1 could not decrease the cell prolifera-
tion in HS-SY-II cells. It was contrary that recognized in
SYO-1. This deference effect of FOXM1 interruption
between the two cell lines, suggested that the FOXM1
involved in SS tumor progression in a variety of ways.

We supposed that the difference might be due to the
morphology (biphasic or monophasic) and genetic ba-
sement (SYT-SSX1 or SSX2). But there was no support-
ive finding by immunohistochemical study and cDNA
microarray analysis.
The cytotoxicity in SS cell lines might be not only via

the inhibition of FOXM1. The mechanism of FOXM1
interruption by thiostrepton has been proposed to be via
the direct binding of FOXM1 [47] and also via its activ-
ity as a proteasome inhibitor [48].
Another proteasome inhibitor, bortezomib, also showed

the ability to interrupt FOXM1, although there is no
evidence of its direct binding to FOXM1 [48]. Little is
known about the efficacy of proteasome inhibitors in SS.
The proteasome inhibitor MG132 has shown antitumor
activity for SS cell lines in vitro [49], However, the results
from a Phase II trial of a single use of bortezomib against

A

B

C D

Fig. 4 Thiostrepton reduced FOXM1 expression in the SS cell lines, producing diminished cell viability. a SS cell lines treated with 1 μM
thiostrepton for 48 h and 72 h showed decreased FOXM1 protein on Western blots. b Treatment of SS cell lines with increasing quantities of
Thiostrepton for 72 h resulted in reduced numbers of viable cells compared to diluent controls. c and d Proliferation of SS cell lines treated with
1 μM thiostrepton, 5 ng/mL DOX, or their combination. The cell lines treated with the combination of both drugs showed lower proliferation
than those treated with each drug individually (c: SYO-I, d: HS-SY-II). *P < 0.05 by Steel-Dwass multiple comparison test
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a variety of relapsed or metastatic sarcomas including SS
have been discouraging [50]. The efficacy of combination
conventional chemotherapy with a proteasome inhibitor
against sarcoma has not been established. In our study,
both cell lines treated with the combination of thiostrep-
ton and DOX showed lower cellular proliferation than
those treated with either drug individually. Thiostrepton
has the potential to be a therapeutic agent for SS cases
showing FOXM1 expression.

Conclusion
We have elucidated that FOXM1 inhibition is a candi-
date treatment option for SS, based on our clinicopatho-
logic assessment and in vitro study, using siRNA and
thiostrepton on two SS cell lines. FOXM1 may be
involved in SS tumor progression in a variety of ways.
Further in vivo and in vitro investigations are warranted
to evaluate the efficacy of FOXM1 inhibitors either alone
or in combination with other agents.

Additional files

Additional file 1: SS cell lines treated with 1 μM thiostrepton for 48 h.
The real-time quantitative PCR showed a reduction of FOXM1 transcript.
(PPTX 73 kb)
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