595 research outputs found
Information dynamics: patterns of expectation and surprise in the perception of music
This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8
A visual programming model to implement coarse-grained DSP applications on parallel and heterogeneous clusters
International audienceThe digital signal processing (DSP) applications are one of the biggest consumers of computing. They process a big data volume which is represented with a high accuracy. They use complex algorithms, and must satisfy a time constraints in most of cases. In the other hand, it's necessary today to use parallel and heterogeneous architectures in order to speedup the processing, where the best examples are the su-percomputers "Tianhe-2" and "Titan" from the top500 ranking. These architectures could contain several connected nodes, where each node includes a number of generalist processor (multi-core) and a number of accelerators (many-core) to finally allows several levels of parallelism. However, for DSP programmers, it's still complicated to exploit all these parallelism levels to reach good performance for their applications. They have to design their implementation to take advantage of all heteroge-neous computing units, taking into account the architecture specifici-ties of each of them: communication model, memory management, data management, jobs scheduling and synchronization . . . etc. In the present work, we characterize DSP applications, and based on their distinctive-ness, we propose a high level visual programming model and an execution model in order to drop down their implementations and in the same time make desirable performances
Recommended from our members
The programming of sequences of saccades
Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in paralle
Evidence for surprise minimization over value maximization in choice behavior
Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations
Eye movements and brain oscillations to symbolic safety signs with different comprehensibility
Background: The aim of this study was to investigate eye movements and brain oscillations to symbolic safety signs with different comprehensibility. Methods: Forty-two young adults participated in this study, and ten traffic symbols consisting of easy-to-comprehend and hard-to-comprehend signs were used as stimuli. During the sign comprehension test, real-time eye movements and spontaneous brain activity [electroencephalogram (EEG) data] were simultaneously recorded. Results: The comprehensibility level of symbolic traffic signs significantly affects eye movements and EEG spectral power. The harder to comprehend the sign is, the slower the blink rate, the larger the pupil diameter, and the longer the time to first fixation. Noticeable differences on EEG spectral power between easy-to-comprehend and hard-to-comprehend signs are observed in the prefrontal and visual cortex of the human brain. Conclusions: Sign comprehensibility has significant effects on real-time nonintrusive eye movements and brain oscillations. These findings demonstrate the potential to integrate physiological measures from eye movements and brain oscillations with existing evaluation methods in assessing the comprehensibility of symbolic safety signs.open
The Role of Graduality for Referring Expression Generation in Visual Scenes
International audienceReferring Expression Generation (reg) algorithms, a core component of systems that generate text from non-linguistic data, seek to identify domain objects using natural language descriptions. While reg has often been applied to visual domains, very few approaches deal with the problem of fuzziness and gradation. This paper discusses these problems and how they can be accommodated to achieve a more realistic view of the task of referring to objects in visual scenes
Does it look safe? An eye tracking study into the visual aspects of fear of crime
Studies of fear of crime often focus on demographic and social factors, but these can be difficult to change. Studies of visual aspects have suggested that features reflecting incivilities, such as litter, graffiti, and vandalism increase fear of crime, but methods often rely on participants actively mentioning such aspects, and more subtle, less conscious aspects may be overlooked. To address these concerns, the present study examined people’s eye movements while they judged scenes for safety. Forty current and former university students were asked to rate images of day-time and
night-time scenes of Lincoln, UK (where they studied) and Egham, UK (unfamiliar location) for safety, maintenance and familiarity, while their eye movements were recorded. Another twenty-five observers not from Lincoln or Egham rated the same images in an internet survey. Ratings showed a strong association between safety and maintenance and lower safety ratings for night-time scenes for both groups, in agreement with earlier findings. Eye movements of the Lincoln participants showed increased dwell times on buildings, houses, and vehicles during safety judgments, and increased dwell times on streets, pavements, and markers of incivilities for maintenance.
Results confirm that maintenance plays an important role in perceptions of safety, but eye movements suggest that observers also look for indicators of current or recent presence of people
- …
