14 research outputs found

    Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes

    Get PDF
    SummaryInhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors

    Presynaptically Released Cbln1 Induces Dynamic Axonal Structural Changes by Interacting with GluD2 during Cerebellar Synapse Formation

    Get PDF
    SummaryDifferentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Improvement of cerebellar ataxic gait by injecting Cbln1 into the cerebellum of cbln1-null mice

    No full text
    Abstract Patients and rodents with cerebellar damage display ataxic gaits characterized by impaired coordination of limb movements. Here, gait ataxia in mice with a null mutation of the gene for the cerebellin 1 precursor protein (cbln1-null mice) was investigated by kinematic analysis of hindlimb movements during locomotion. The Cbln1 protein is predominately produced and secreted from cerebellar granule cells. The cerebellum of cbln1-null mice is characterized by an 80% reduction in the number of parallel fiber-Purkinje cell synapses compared with wild-type mice. Our analyses identified prominent differences in the temporal parameters of locomotion between cbln1-null and wild-type mice. The cbln1-null mice displayed abnormal hindlimb movements that were characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles and knees. When recombinant Cbln1 protein was injected into the cerebellum of cbln1-null mice, the step cycle and stance phase durations increased toward those of wild-type mice, and the angular excursions of the knee during a cycle period showed a much closer agreement with those of wild-type mice. These findings suggest that dysfunction of the parallel fiber-Purkinje cell synapses might underlie the impairment of hindlimb movements during locomotion in cbln1-null mice

    Development and validation of a prognostic scoring model for Mycobacterium avium complex lung disease: an observational cohort study

    No full text
    Abstract Background Patients with Mycobacterium avium complex (MAC) lung disease (LD) have a heterogeneous prognosis. This study aimed to develop and validate a prognostic scoring model for these patients using independent risk factors for survival. Methods We retrospectively analyzed the data of patients with MAC-LD from two hospitals (cohort 1, n = 368; cohort 2, n = 118). Cohort 1 was evaluated using a multivariate Cox proportional hazards model to identify independent risk factors for overall survival (OS). A prognostic scoring model composed of these factors was developed, and cohort 1 was stratified into three groups according to risk using the log-rank test. Finally, the prognostic scoring model was validated using the data of cohort 2. Results Seven independent risk factors for OS were selected from cohort 1, including the male sex, age ≥ 70 years, the presence of a malignancy, body mass index <18.5 kg/m2, lymphocyte count <1000 cells/μL, serum albumin levels <3.5 g/dL, and fibrocavitary disease. The areas under the receiver operating characteristic curves for the prognostic scoring model were 0.84 [95% confidence interval (CI), 0.80 − 0.89] for cohort 1 and 0.84 (95% CI, 0.75 − 0.92) for cohort 2. The 5-year OS rates of patients stratified into low-risk, intermediate-risk, and high-risk groups were 97.6, 76.6, and 30.8%, respectively (P < 0.001), in cohort 1, and 97.2, 82.3, and 45.4%, respectively (P < 0.001), in cohort 2. Conclusions This study is the first to develop and validate a prognostic scoring model for patients with MAC-LD. This model may prove useful in clinical settings and practical in estimating the prognosis
    corecore