189 research outputs found

    Asteroseismic test of rotational mixing in low-mass white dwarfs

    Full text link
    We exploit the recent discovery of pulsations in mixed-atmosphere (He/H), extremely low-mass white dwarf precursors (ELM proto-WDs) to test the proposition that rotational mixing is a fundamental process in the formation and evolution of low-mass helium core white dwarfs. Rotational mixing has been shown to be a mechanism able to compete efficiently against gravitational settling, thus accounting naturally for the presence of He, as well as traces of metals such as Mg and Ca, typically found in the atmospheres of ELM proto-WDs. Here we investigate whether rotational mixing can maintain a sufficient amount of He in the deeper driving region of the star, such that it can fuel, through HeII-HeIII ionization, the observed pulsations in this type of stars. Using state-of-the-art evolutionary models computed with MESA, we show that rotational mixing can indeed explain qualitatively the very existence and general properties of the known pulsating, mixed-atmosphere ELM proto-WDs. Moreover, such objects are very likely to pulsate again during their final WD cooling phase.Comment: accepted for publication in A&A Letter

    The Peculiar Phase Structure of Random Graph Bisection

    Full text link
    The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of "cut" edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays certain familiar properties, but also some surprises. It is known that when the mean degree is below the critical value of 2 log 2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made minor stylistic changes and added reference

    Research on the pigment content in various apple tree varieties, treated with capsicoside

    Get PDF
    Furostanol glycoside represents a natural substance belonging to the class of saponines. Capsicoside , one of them, is found in Capsicum annuum seeds and it was obtained by the alcoholic extraction from pepper seeds. It is a bioactive substance of vegetal origin, having a wide range of biological activities, especially antiviral and antifungal properties. The goal of the present paper was to promote this bioactive compound and to evaluate its biological activity. The influence of the plant compound with steroidal glycoside structure was studied on the plantation of apple trees. The treatments consisted in spraying the aqueous solution of Capsicoside, at different doses and ways of using. The results of the experiments pointed out the positive effects of the influence of steroidal glycosides on the growth and quality development of apple trees

    Discovery, TESS Characterization, and Modeling of Pulsations in the Extremely Low-mass White Dwarf GD 278

    Get PDF
    We report the discovery of pulsations in the extremely low-mass (ELM), likely helium-core white dwarf GD 278 via ground- and space-based photometry. GD 278 was observed by the Transiting Exoplanet Survey Satellite (TESS) in Sector 18 at a 2 minute cadence for roughly 24 days. The TESS data reveal at least 19 significant periodicities between 2447 and 6729 s, one of which is the longest pulsation period ever detected in a white dwarf. Previous spectroscopy found that this white dwarf is in a 4.61 hr orbit with an unseen >0.4 M ⊙ companion and has T eff = 9230 ± 100 K and logg=6.627±0.056" role="presentation">logg=6.627±0.056 , which corresponds to a mass of 0.191 ± 0.013 M ⊙. Patterns in the TESS pulsation frequencies from rotational splittings appear to reveal a stellar rotation period of roughly 10 hr, making GD 278 the first ELM white dwarf with a measured rotation rate. The patterns inform our mode identification for asteroseismic fits, which, unfortunately, do not reveal a global best-fit solution. Asteroseismology reveals two main solutions roughly consistent with the spectroscopic parameters of this ELM white dwarf, but with vastly different hydrogen-layer masses; future seismic fits could be further improved by using the stellar parallax. GD 278 is now the tenth known pulsating ELM white dwarf; it is only the fifth known to be in a short-period binary, but is the first with extended, space-based photometry.Fil: Lopez, Isaac D.. North Carolina State University; Estados UnidosFil: Hermes, J. J.. University Of Boston. Departament Astronomy; Estados UnidosFil: Calcaferro, Leila Magdalena. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Bell, Keaton. University of Washington; Estados UnidosFil: Samuels, Adam. University Of Boston. Departament Astronomy. Center For Space Physics; Estados UnidosFil: Vanderbosch, Zachary P.. University of Texas at Austin; Estados UnidosFil: Corsico, Alejandro Hugo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Istrate, Alina G.. University of Utrecht; Países Bajo

    Stellar archaeology with Gaia: the Galactic white dwarf population

    Full text link
    Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous scientific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.Comment: Summary of a talk at the 'Multi-Object Spectroscopy in the Next Decade' conference in La Palma, March 2015, to be published in ASP Conference Series (editors Ian Skillen & Scott Trager

    Progenitor neutron stars of the lightest and heaviest millisecond pulsars

    Full text link
    The recent mass measurements of two binary millisecond pulsars, PSR J1614-2230 and PSR J0751+1807 with a mass M=1.97+/-0.04 Msun and M= 1.26 +/- 0.14 Msun, respectively, indicate a wide range of masses for such objects and possibly also a broad spectrum of masses of neutron stars born in core-collapse supernovae. Starting from the zero-age main sequence binary stage, we aim at inferring the birth masses of PSR J1614-2230 and PSR J0751+1807 by taking the differences in the evolutionary stages preceding their formation into account. Using simulations for the evolution of binary stars, we reconstruct the evolutionary tracks leading to the formation of PSR J1614-2230 and PSR J0751+1807. We analyze in detail the spin evolution due to the accretion of matter from a disk in the intermediate-mass/low-mass X-ray binary. We consider two equations of state of dense matter, one for purely nucleonic matter and the other one including a high-density softening due to the appearance of hyperons. Stationary and axisymmetric stellar configurations in general relativity are used, together with a recent magnetic torque model and observationally-motivated laws for the decay of magnetic field. The estimated birth mass of the neutron stars PSR J0751+1807 and PSR J1614-2230 could be as low as 1.0 Msun and as high as 1.9 Msun, respectively. These values depend weakly on the equation of state and the assumed model for the magnetic field and its accretion-induced decay. The masses of progenitor neutron stars of recycled pulsars span a broad interval from 1.0 Msun to 1.9 Msun. Including the effect of a slow Roche-lobe detachment phase, which could be relevant for PSR J0751+1807, would make the lower mass limit even lower. A realistic theory for core-collapse supernovae should account for this wide range of mass.Comment: 13 pages, 10 figures, accepted in A&
    corecore