7 research outputs found

    Properties of acyl modified poly(glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles

    Get PDF
    There is an increasing need to develop bio-compatible polymers with an increased range of different physicochemical properties. Poly(glycerol-adipate) (PGA) is a biocompatible, biodegradable amphiphilic polyester routinely produced from divinyl adipate and unprotected glycerol by an enzymatic route, bearing a hydroxyl group that can be further functionalized. Polymers with an average Mn of ∼13 kDa can be synthesized without any post-polymerization deprotection reactions. Acylated polymers with fatty acid chain length of C4, C8, and C18 (PGAB, PGAO, and PGAS, respectively) at different degrees of substitution were prepared. These modifications yield comb-like polymers that modulate the amphiphilic characteristics of PGA. This novel class of biocompatible polymers has been characterized through various techniques such as FT-IR, 1H NMR, surface, thermal analysis, and their ability to self-assemble into colloidal structures was evaluated by using DLS. The highly tunable properties of PGA reported herein demonstrate a biodegradable polymer platform, ideal for engineering solid dispersions, nanoemulsions, or nanoparticles for healthcare applications

    Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol adipate)

    Get PDF
    Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5–9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates

    Simultaneous Delivery of Curcumin and Resveratrol via In Situ Gelling, Raft-Forming, Gastroretentive Formulations

    No full text
    Curcumin and resveratrol are polyphenolic compounds that have been shown to exhibit synergistic therapeutic properties including anti-inflammatory, anticancer, and antiulcer activities, which may be exploited for the treatment of gastric diseases. However, both compounds have poor aqueous solubility and rapid metabolism, resulting in a low oral bioavailability. In situ gelling, liquid formulations were developed to produce a gastroretentive, raft-forming delivery vehicle to improve bioavailability. Solid dispersions containing a mixture of curcumin and resveratrol with Eudragit® EPO (Cur/Res-SD) were first prepared using solvent evaporation, to improve the solubility and dissolution of the compounds. Solid dispersions of a weight ratio of 1:10 curcumin/resveratrol to Eudragit® EPO were subsequently incorporated into in situ gelling, liquid formulations based on the gelling polymers, sodium alginate (low viscosity and medium viscosity), pectin, and gellan gum, respectively. Calcium carbonate and sodium bicarbonate were included to produce carbon dioxide bubbles in the gel matrix, on exposure to gastric fluid, and to achieve flotation. Moreover, the calcium ions acted as a crosslinking agent for the hydrogels. Optimized formulations floated rapidly (<60 s) in simulated gastric fluid (pH = 1.2) and remained buoyant, resulting in the gradual release of more than 80% of the curcumin and resveratrol content within 8 h. The optimized formulation based on medium-viscosity sodium alginate exhibited enhanced cytotoxic activity toward human gastric adenocarcinoma cell lines (AGS), compared with unformulated curcumin and resveratrol compounds, and increased anti-inflammatory activity against RAW 264.7 macrophage cells compared with the NSAID, indomethacin. These findings demonstrate that in situ gelling, liquid formulations, loaded with a combination of curcumin and resveratrol in the form of solid dispersions, show potential as gastroretentive delivery systems for local and systemic effects
    corecore