35 research outputs found

    Post-Ugi transformations for the access to pyrrolobenzodiazepine scaffolds with different degrees of unsaturation

    Get PDF
    The synthesis of three novel families of pyrrolo[2,1-c][1,4]benzodiazepine-5-ones is described. The compounds were prepared according to a three-step sequence, involving an Ugi reaction, building of the pyrrolo nucleus, and reduction–cyclization to the corresponding diazepine. Depending on the amine employed in the synthesis of the Ugi adducts, different unsaturation degrees could be obtained in the pyrrolo ring (saturated or with endo or exo unsaturations), a key feature determining their biological activity, as it affects the affinity of the pyrrolobenzodiazepines toward DNA and thus their cytotoxicity. This synthetic methodology represents a significant improvement with respect to those described in the literature so far, as it uses inexpensive and commercially available starting materials without needing derivatization or the use of protecting groups.Consejería de Educación de la Junta de Castilla y León (project BU075G19

    Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts

    Get PDF
    [Abstract] The ditopic receptor L3 [1-(2-((7-(4-(tert-butyl)benzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)phenyl)-3-(3-nitrophenyl)urea] containing a macrocyclic cyclen unit for Cu(II)-coordination and a urea moiety for anion binding was designed for recognition of metal salts. The X-ray structure of [CuL3(SO4)] shows that the sulfate anion is involved in cooperative binding via coordination to the metal ion and hydrogen-bonding to the urea unit. This behaviour is similar to that observed for the related receptor L1 [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea], which forms a dimeric [CuL1(ÎŒ-SO4)]2 structure in the solid state. In contrast, the single crystal X-ray structure of [ZnL3(NO3)2] contains a 1 : 2 complex (metal : anion) where one anion coordinates to the metal and the other is hydrogen-bonded to the urea group. Spectrophotometric titrations performed for the [CuL3(OSMe2)]2+ complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2− > Cl− > H2PO4− > Br− > NO2− > HSO4− > NO3−. Lipophilic analogues of L1 and L3 extract CuSO4 and CuCl2 from water into chloroform with high selectivity over the corresponding Co(II), Ni(II) and Zn(II) salts.Xunta de Galicia; EM 2012/088Xunta de Galicia; CN-2012/01

    Cinderella Elements: Strategies to Increase the Stability of Group 1 Complexes by Tailoring Crown Macrocycles

    Get PDF
    [Abstract] The synthesis and structural characterization of six sodium complexes with bibracchial lariatethers containing aniline or benzimidazole side arms, and derived from 1,7 diaza-12-crown-4, 1,10-diaza-15-crown-5 or 4,13-diaza-18-crown-6, are reported. The X-ray structures of four of these compounds have been obtained. Additionally, the X-ray structures of a sodium macrobicyclic complex derived from 1,10-diaza-15-crown-5, and a potassium complex with a bibracchial lariat ether containing aniline side arms are also reported. Bonding distances as well as the stability constants in acetonitrile solution confirm that the coordination of the pendant arms provides an important contribution to the overall stability of the complexes, particularly when benzimidazole pendants are present rending more stable complexes, even more than cryptand complexes of the same size. Compared with the parent crown ethers, the stability increases when the side arms contain benzimidazole moieties but remains about the same order when aniline side arms are present.Xunta de Galicia; CN2012/01

    Recognition of AMP, ADP and ATP through cooperative binding by Cu(II) and Zn(II) complexes containing urea and/or phenylboronic acid moieties

    Get PDF
    [Abstract] We report a series of Cu(II) and Zn(II) complexes with different ligands containing a dipicolyl unit functionalized with urea groups that may contain or not a phenylboronic acid function. These complexes were designed for the recognition of phosphorylated anions through coordination to themetal ion reinforced by hydrogen bonds involving the anion and NHgroups of urea. The complexes were isolated and several adducts with pyrophosphate were characterized using X-ray diffraction measurements. Coordination of one of the urea nitrogen atoms to themetal ion promoted the hydrolysis of the ligands containing 1,3-diphenylurea units, while ligands bearing 1-ethyl-3-phenylurea groups did not hydrolyze significantly at room temperature. Spectrophotometric titrations, combined with 1H and 31P NMR studies, were used in investigating the binding of phosphate, pyrophosphate (PPi), and nucleoside 50-polyphosphates (AMP, ADP, ATP, CMP, and UMP). The association constants determined in aqueous solution (pH 7.0, 0.1MMOPS) point to a stronger association with PPi, ADP, and ATP as compared with the anions containing a single phosphate unit. The [CuL4]2+ complex shows important selectivity for pyrophosphate (PPi) over ADP and ATP.Galicia. ConsellerĂ­a de Cultura, EducaciĂłn e OrdenaciĂłn Universitaria; EM 2012/08

    A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4,13-diaza-18-crown-6

    Get PDF
    [Abstract] Herein, we report the synthesis and structural characterization of alkaline-earth complexes with the bibracchial lariat ethers N,Nâ€Č-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 (L2) and N,Nâ€Č-bis(benzimidazol-2ylmethyl)-4,13-diaza-18-crown-6 (L4). The X-ray crystal structures of the Ca(II) and Sr(II) complexes of L2 show the pendant arms of the ligand disposed on opposite sides of the macrocyclic mean plane, which results in an anti conformation in the solid state. A similar anti conformation is also observed for the Mg(II) complex of L4, whereas the Ca(II), Sr(II) and Ba(II) complexes of L4 adopt a syn conformation in the solid state, with the two pendant arms pointing at the same side of the crown moiety. However, a different behavior is observed in solution. Indeed, 1H and 13C NMR spectroscopy, in combination with density functional theory (DFT) calculations performed at the B3LYP level, suggests that the [M(L2)]2+ and [M(L4)]2+ (M = Ca, Sr or Ba) complexes exist in solution as a mixture of syn and anti isomers involved in a dynamic equilibrium. Our results also show that the relative abundance of the syn conformation increases as the ionic radius of the metal ion increases and, furthermore, for a given metal ion the proportion of syn isomer is always higher for L4 complexes than for L2 ones.Xunta de Galicia; PGIDIT06TAM10301PRXunta de Galicia; INCITE09E1R103013E

    Solid state and solution structures of alkaline-earth complexes with lariat ethers containing aniline and benzimidazole pendants

    Get PDF
    [Abstract] Herein we report the synthesis and structural characterization of Mg(II), Ca(II), Sr(II) and Ba(II) complexes with bibracchial lariat ethers derived from 1,7-diaza-15-crown-5 and 1,7-diaza-12-crown-4 containing aniline or benzimidazole pendant arms. The solid state structures of most of them have been determined by using single crystal X-ray crystallography. A coordination number of seven was observed for the Mg(II) complexes in the solid state, while the Ca(II), Sr(II) and Ba(II) complexes are 8-, 9- and 11-coordinate, respectively. The Ca(II), Sr(II) and Ba(II) complexes show a syn conformation, with the two pendant arms of the ligand disposed on the same side of the macrocyclic mean plane. However, the Mg(II) complex with the largest ligand derived from 1,7-diaza-15-crown-5 containing benzimidazole pendants presents an anti conformation in the solid state. 1H and 13C NMR spectroscopy reveal that this conformation is maintained in acetonitrile solution.Xunta de Galicia; IN845B-2010/06

    Structure-antitumor activity relationships of tripodal imidazolium-amino acid based salts : effect of the nature of the amino acid, amide substitution and anion

    Get PDF
    The antitumor activity of imidazolium salts is highly dependent upon their lipophilicity that can be tuned by the introduction of different hydrophobic substituents on the nitrogen atoms of the imidazolium ring of the molecule. Taking this into consideration, we have synthesized and characterized a series of tripodal imidazolium salts derived from l-valine and l-phenylalanine containing different hydrophobic groups and tested them against four cancer cell lines at physiological and acidic pH. At acidic pH (6.2) the anticancer activity of some of the tripodal compounds changes dramatically, and this parameter is crucial to control their cytotoxicity and selectivity. Moreover, several of these compounds displayed selectivity against the control healthy cell line higher than four. The transmembrane anion transport studies revealed moderate transport abilities suggesting that the observed biological activity is likely not the result of just their transport activity. The observed trends in biological activity at acidic pH agree well with the results for the CF leakage assay. These results strongly suggest that this class of compounds can serve as potential chemotherapeutic agents.Peer reviewe

    Simple isophthalamides/dipicolineamides as active transmembrane anion transporters

    Get PDF
    Eight N,NÂŽ-diarylisophthalamide/dipicolineamide derivatives have been synthesised and fully characterised, both in solution and in the solid state. The transmembrane anion transport properties of these compounds have been studied by chloride-selective electrode and fluorescence experiments. The substitution pattern of the aromatic moieties determines the transport properties of these systems, with those containing electron-withdrawing groups in their structures being the most active ones of the series.ConsejerĂ­a de EducaciĂłn de la Junta de Castilla y LeĂłn (project BU075G19

    Small molecule anion carriers facilitate lactate transport in model liposomes and cells

    Full text link
    An excessive production of lactate by cancer cells fosters tumor growth and metastasis. Therefore, targeting lactate metabolism and transport offers a new therapeutic strategy against cancer, based on dependency of some cancer cells for lactate as energy fuel or as oncogenic signal. Herein we present a family of anionophores based on the structure of click-tambjamines that have proved to be extremely active lactate carriers across phospholipid membranes. Compound 1, the most potent lactate transmembrane carrier, was studied in HeLa cells. The use of a monocarboxylate transporters (MCTs) inhibitor proved that 1 is an active lactate transporter in living cells, confirming the results obtained in phospholipid vesicles. Moreover, an additive effect of compound 1 with cisplatin was observed in HeLa cells. Identification of active lactate anionophores working in living cells opens up ways to exploit this class of compounds as molecular tools and drugs addressing dysregulated lactate metabolism

    Small molecule anion transporters display in vitro antimicrobial activity against clinically relevant bacterial strains

    Get PDF
    Highly active transmembrane anion transporters have demonstrated their activity against antibiotic-resistant and clinically relevant bacterial strains. This type of compound offers promise as a strategy to develop novel antibacterial agents
    corecore