11 research outputs found

    Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease

    No full text
    Abstract The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first-line diagnostic investigations in mitochondrial disease complementing muscle biopsy

    Expanding the phenotypic spectrum of BCS1L-related mitochondrial disease

    Get PDF
    Publisher Copyright: © 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological AssociationObjective: To delineate the full phenotypic spectrum of BCS1L-related disease, provide better understanding of the genotype–phenotype correlations and identify reliable prognostic disease markers. Methods: We performed a retrospective multinational cohort study of previously unpublished patients followed in 15 centres from 10 countries. Patients with confirmed biallelic pathogenic BCS1L variants were considered eligible. Clinical, laboratory, neuroimaging and genetic data were analysed. Patients were stratified into different groups based on the age of disease onset, whether homozygous or compound heterozygous for the c.232A>G (p.Ser78Gly) variant, and those with other pathogenic BCS1L variants. Results: Thirty-three patients were included. We found that growth failure, lactic acidosis, tubulopathy, hepatopathy and early death were more frequent in those with disease onset within the first month of life. In those with onset after 1 month, neurological features including movement disorders and seizures were more frequent. Novel phenotypes, particularly involving movement disorder, were identified in this group. The presence of the c.232A>G (p.Ser78Gly) variant was associated with significantly worse survival and exclusively found in those with disease onset within the first month of life, whilst other pathogenic BCS1L variants were more frequent in those with later symptom onset. Interpretation: The phenotypic spectrum of BCS1L-related disease comprises a continuum of clinical features rather than a set of separate syndromic clinical identities. Age of onset defines BCS1L-related disease clinically and early presentation is associated with poor prognosis. Genotype correlates with phenotype in the presence of the c.232A>G (p.Ser78Gly) variant.Peer reviewe

    Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases

    No full text
    Summary Background: Variants in POLG are one of the most common causes of inherited mitochondrial disease. Phenotypic classification of POLG disease has evolved haphazardly making it complicated and difficult to implement in everyday clinical practise. The aim of our study was to simplify the classification and facilitate better clinical recognition. Methods: A multinational, retrospective study using data from 155 patients with POLG variants recruited from seven European countries. Results: We describe the spectrum of clinical features associated with POLG variants in the largest known cohort of patients. While clinical features clearly form a continuum, stratifying patients simply according to age of onset—onset prior to age 12 years; onset between 12 and 40 years and onset after the age of 40 years, permitted us to identify clear phenotypic and prognostic differences. Prior to 12 years of age, liver involvement (87%), seizures (84%), and feeding difficulties (84%) were the major features. For those with onset between 12 and 40 years, ataxia (90%), peripheral neuropathy (84%), and seizures (71%) predominated, while for those with onset over 40 years, ptosis (95%), progressive external ophthalmoplegia (89%), and ataxia (58%) were the major clinical features. The earlier the onset the worse the prognosis. Patients with epilepsy and those with compound heterozygous variants carried significantly worse prognosis. Conclusions: Based on our data, we propose a simplified POLG disease classification, which can be used to guide diagnostic investigations and predict disease course

    Retrospective natural history of thymidine kinase 2 deficiency

    Get PDF
    Background Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. Objective To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. Methods The study was conducted by 42 investigators across 31 academic medical centres. Results We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. Conclusions In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.Peer reviewe

    The impact of gender, puberty, and pregnancy in patients with POLG disease

    No full text
    Abstract Objective: To study the impact of gender, puberty, and pregnancy on the expression of POLG disease, one of the most common mitochondrial diseases known. Methods: Clinical, laboratory, and genetic data were collected retrospectively from 155 patients with genetically confirmed POLG disease recruited from seven European countries. We used the available data to study the impact of gender, puberty, and pregnancy on disease onset and deterioration. Results: We found that disease onset early in life was common in both sexes but there was also a second peak in females around the time of puberty. Further, pregnancy had a negative impact with 10 of 14 women (71%) experiencing disease onset or deterioration during pregnancy. Interpretation: Gender clearly influences the expression of POLG disease. While onset very early in life was common in both males and females, puberty in females appeared associated both with disease onset and increased disease activity. Further, both disease onset and deterioration, including seizure aggravation and status epilepticus, appeared to be associated with pregnancy. Thus, whereas disease activity appears maximal early in life with no subsequent peaks in males, both menarche and pregnancy appear associated with disease onset or worsening in females. This suggests that hormonal changes may be a modulating factor

    3-Methylglutaconic aciduria--lessons from 50 genes and 977 patients

    Get PDF
    Elevated urinary excretion of 3-methylglutaconic acid is considered rare in patients suspected of a metabolic disorder. In 3-methylglutaconyl-CoA hydratase deficiency (mutations in AUH), it derives from leucine degradation. In all other disorders with 3-methylglutaconic aciduria the origin is unknown, yet mitochondrial dysfunction is thought to be the common denominator. We investigate the biochemical, clinical and genetic data of 388 patients referred to our centre under suspicion of a metabolic disorder showing 3-methylglutaconic aciduria in routine metabolic screening. Furthermore, we investigate 591 patients with 50 different, genetically proven, mitochondrial disorders for the presence of 3-methylglutaconic aciduria. Three percent of all urine samples of the patients referred showed 3-methylglutaconic aciduria, often in correlation with disorders not reported earlier in association with 3-methylglutaconic aciduria (e.g. organic acidurias, urea cycle disorders, haematological and neuromuscular disorders). In the patient cohort with genetically proven mitochondrial disorders 11% presented 3-methylglutaconic aciduria. It was more frequently seen in ATPase related disorders, with mitochondrial DNA depletion or deletion, but not in patients with single respiratory chain complex deficiencies. Besides, it was a consistent feature of patients with mutations in TAZ, SERAC1, OPA3, DNAJC19 and TMEM70 accounting for mitochondrial membrane related pathology. 3-methylglutaconic aciduria is found quite frequently in patients suspected of a metabolic disorder, and mitochondrial dysfunction is indeed a common denominator. It is only a discriminative feature of patients with mutations in AUH, TAZ, SERAC1, OPA3, DNAJC19 TMEM70. These conditions should therefore be referred to as inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature
    corecore