24 research outputs found

    An Ex Vivo Model Employing Keloid-Derived Cell–Seeded Collagen Sponges for Therapy Development

    Get PDF
    The most distinctive feature of keloid is the extreme deposition of extracellular matrix, including collagens and proteoglycans (PGs). The focus of this study was the PG versican, which presumably defines keloid volume because of its ability to retain large amounts of water through its component glycosaminoglycans (GAGs). The excessive deposition of versican in keloids was examined by immunohistochemical analysis and by upregulation of the versican gene in these lesions by real-time PCR. The latter showed that mesenchymal cells derived from keloid lesion (KL) cells continue to exhibit above-normal versican production in culture. To establish a model of GAG deposition in keloids, collagen sponges seeded with KL cells (KL-SPos) were implanted in the subcutaneous space of nude mice. After 1 month, the KL-SPos were significantly heavier than the fibroblast (Fb)-seeded sponges (Fb-SPos). This ex vivo model was subsequently used to examine an inhibitory ability of IL-1β that was identified to reduce versican in vitro. IL-1β or chondroitinase ABC, when injected directly, successfully reduced the weight of the KL-SPos. Thus, on the basis of the change in weight of the seeded sponges, this ex vivo model can be used to test therapies aimed at reducing or inhibiting keloid formation and to study the pathogenesis of this aberrant response

    Effects of Fiber Diameter and Spacing Size of an Artificial Scaffold on the In Vivo Cellular Response and Tissue Remodeling.

    Get PDF
    By mimicking the extracellular matrix, nonwoven fabrics can function as scaffolds for tissue engineering application ideally, and they have been characterized regarding their fiber diameter and fiber spacing (spacing size) in vitro. We chronologically examined the in vivo effects of these fabrics on the cellular response and tissue remodeling. Four types of nonwoven polyglycolic acid fabrics (Fabric-0.7, Fabric-0.9, Fabric-3, and Fabric-16 with fiber diameters of 0.7, 0.9, 3.0, and 16.2 μm and spacing sizes of 2.0, 19.3, 19.0, and 825.4 μm, respectively) were implanted into the rat dorsum and subjected to histologic and immunohistochemical analyses from day 3 to 70. With Fabric-0.7, inflammatory cells (mainly M1 macrophages) and myofibroblasts with collagen type III accumulated mainly on the surface of the fabric and did not infiltrate inside the fabric initially, likely due to the narrow fiber space. Massive formation of collagen type I then appeared with the degradation of the fabrics, and finally, the remodeled tissue turned into a dense scar. With Fabric-0.9 and Fabric-3, inflammatory cells (predominantly M2 macrophages) were seen in all layers of the fabric initially. A mild increase in collagen type I was then seen, with few myofibroblasts, and the remodeled tissue ultimately showed a relatively little scar with an adequate thickness of the tissue induced by the fabrics. With Fabric-16, inflammatory cells (predominantly M1 macrophages) infiltrated into all layers of the fabric initially along with many myofibroblasts, especially in the hole. Lately, massive formation of collagen type I was noted due to the slow degradation of the fabric, with the shrinking of the fabric substantially, and the remodeled tissue finally turned to a dense scar. These findings suggest that optimizing the spacing size as well as the fiber diameter of artificial scaffolds may control the cellular response and tissue remodeling and facilitate favorable tissue regeneration without scar formation

    Identification of RNF213 as a Susceptibility Gene for Moyamoya Disease and Its Possible Role in Vascular Development

    Get PDF
    もやもや病感受性遺伝子の特定とその機能についての発見. 京都大学プレスリリース. 2011-7-21.Background Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Methodology/Principal Findings Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10-4). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10−119). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. Conclusions/Significance We provide evidence suggesting, for the first time, the involvement of RNF213 in genetic susceptibility to moyamoya disease

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    ALK-Positive Squamous Cell Carcinoma Dramatically Responded to Alectinib

    No full text
    Anaplastic lymphoma kinase (ALK) rearrangement is usually observed in patients with adenocarcinoma. Herein, we report a case of squamous cell carcinoma (SCC) with ALK rearrangement treated with alectinib. The patient was a 73-year-old woman without a smoking history. She consulted us with nonproductive cough and loss of appetite. Computed tomography scan revealed a mass in the left lower lobe of the lung. According to the pathological examinations, we diagnosed the tumor as SCC. Because the patient had never smoked, we searched for driver mutations and found that the tumor harbored ALK rearrangement. We began treatment with alectinib, and the tumor remarkably reduced in volume. No severe adverse events were observed. Although there are only few reports of SCC with ALK rearrangement, this case implies that clinicians should consider searching for driver mutations in patients with SCC when there are atypical findings or characteristics

    ALK-Positive Squamous Cell Carcinoma Dramatically Responded to Alectinib

    No full text
    Anaplastic lymphoma kinase (ALK) rearrangement is usually observed in patients with adenocarcinoma. Herein, we report a case of squamous cell carcinoma (SCC) with ALK rearrangement treated with alectinib. The patient was a 73-year-old woman without a smoking history. She consulted us with nonproductive cough and loss of appetite. Computed tomography scan revealed a mass in the left lower lobe of the lung. According to the pathological examinations, we diagnosed the tumor as SCC. Because the patient had never smoked, we searched for driver mutations and found that the tumor harbored ALK rearrangement. We began treatment with alectinib, and the tumor remarkably reduced in volume. No severe adverse events were observed. Although there are only few reports of SCC with ALK rearrangement, this case implies that clinicians should consider searching for driver mutations in patients with SCC when there are atypical findings or characteristics
    corecore