109 research outputs found

    In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major Dengue virus vector <it>Aedes aegypti </it>requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of <it>Ae. aegypti </it>midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes.</p> <p>Results</p> <p>We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (k<sub>cat</sub>/K<sub>M</sub>) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin.</p> <p>Conclusions</p> <p>These data show that <it>in vitro </it>activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.</p

    The Putative AKH Receptor of the Tobacco Hornworm, Manduca sexta, and Its Expression

    Get PDF
    Adipokinetic hormones are peptide hormones that mobilize lipids and/or carbohydrates for flight in adult insects and activate glycogen Phosphorylase in larvae during starvation and during molt. We previously examined the functional roles of adipokinetic hormone in Manduca sexta L. (Lepidoptera: Sphingidae). Here we report the cloning of the full-length cDNA encoding the putative adipokinetic hormone receptor from the fat body of M. sexta. The sequence analysis shows that the deduced amino acid sequence shares common motifs of G protein-coupled receptors, by having seven hydrophobic transmembrane segments. We examined the mRNA expression pattern of the adipokinetic hormone receptor by quantitative Real-Time PCR in fat body during development and in different tissues and found the strongest expression in fat body of larvae two days after molt to the fifth instar. We discuss these results in relation to some of our earlier results. We also compare the M. sexta adipokinetic hormone receptor with the known adipokinetic hormone receptors of other insects and with gonadotropin releasing hormone-like receptors of invertebrates

    Oviposition Preference and Offspring Performance In Container Breeding Mosquitoes: Evaluating the Effects of Organic Compounds and Laboratory Colonisation

    Get PDF
    1. The preference–performance hypothesis (PPH) predicts that organisms lacking parental care should oviposit in habitats that optimise offspring performance. Preference–performance relationships were investigated for the Asian tiger mosquito (Aedes albopictus Skuse) and the southern house mosquito (Culex quinquefasciatus Say) (Diptera: Culicidae), two medically important container-breeding species, in response to an organic chemical blend mimicking decaying plant matter. Additionally, the effects of long-term laboratory colonisation of Cx. quinquefasciatus using wild and laboratory strains were evaluated. 2. Oviposition bioassays were conducted by releasing gravid mosquitoes into field enclosures with automobile tires containing low and high concentrations of the chemical blend, and water controls. The offspring were then reared in water collected from the tires in which they were deposited. 3. Aedes albopictus and wild Cx. quinquefasciatus laid more eggs in the chemical blend than water controls but did not differentiate between the low and high concentrations. Conversely, laboratory Cx. quinquefasciatus only preferred the high concentration to the low concentration. No statistical associations between oviposition preference and larval survival were found, as the chemical blend did not affect survivorship of either species. 4. The oviposition preference for the chemical blend over water controls suggests that both species oviposit in the best available resource environment, but further studies are needed before conclusions regarding preference–performance relationships can be drawn. 5. It was found that long-term laboratory colonisation affects the oviposition behaviour in Cx. quinquefasciatus, suggesting that behavioural studies on laboratory strains are not always applicable to wild populations

    Alpha-COPI Coatomer Protein Is Required for Rough Endoplasmic Reticulum Whorl Formation in Mosquito Midgut Epithelial Cells

    Get PDF
    One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation.Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked.alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases

    Insulin-Like Peptides and the Target of Rapamycin Pathway Coordinately Regulate Blood Digestion and Egg Maturation in the Mosquito Aedes aegypti

    Get PDF
    Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear.Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production.Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species

    Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the <it>CYBA </it>gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O<sub>2</sub><sup>‱- </sup>(-675 T → A in <it>CYBA</it>, unregistered) and in glutathione metabolism (-129 C → T in <it>GCLC </it>[rs17883901] and -65 T → C in <it>GPX3 </it>[rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients.</p> <p>Methods</p> <p>401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≄ 60 mL (n = 265) or < 60 mL/min/1.73 m<sup>2 </sup>(n = 136) and were genotyped.</p> <p>Results</p> <p>No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying <it>CYBA </it>genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying <it>GCLC </it>genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (<it>p </it>= 0.0082). Logistic regression analysis identified the presence of at least one A allele of the <it>CYBA </it>SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, <it>p </it>= 0.0354) and the presence of at least one T allele of the <it>GCLC </it>rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, <it>p </it>= 0.0068).</p> <p>Conclusions</p> <p>The functional SNPs <it>CYBA </it>-675 T → A and <it>GCLC </it>rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.</p

    In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito

    Get PDF
    A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosaomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes

    Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses

    Get PDF
    West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≄5-fold differentially up-regulated (DUR) and 202 genes that were ≄10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses

    Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The horn fly, <it>Haematobia irritans </it>(Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).</p> <p>Results</p> <p>A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.</p> <p>Conclusions</p> <p>These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.</p
    • 

    corecore