1,489 research outputs found

    A Deep Dive into the Google Cluster Workload Traces: Analyzing the Application Failure Characteristics and User Behaviors

    Full text link
    Large-scale cloud data centers have gained popularity due to their high availability, rapid elasticity, scalability, and low cost. However, current data centers continue to have high failure rates due to the lack of proper resource utilization and early failure detection. To maximize resource efficiency and reduce failure rates in large-scale cloud data centers, it is crucial to understand the workload and failure characteristics. In this paper, we perform a deep analysis of the 2019 Google Cluster Trace Dataset, which contains 2.4TiB of workload traces from eight different clusters around the world. We explore the characteristics of failed and killed jobs in Google's production cloud and attempt to correlate them with key attributes such as resource usage, job priority, scheduling class, job duration, and the number of task resubmissions. Our analysis reveals several important characteristics of failed jobs that contribute to job failure and hence, could be used for developing an early failure prediction system. Also, we present a novel usage analysis to identify heterogeneity in jobs and tasks submitted by users. We are able to identify specific users who control more than half of all collection events on a single cluster. We contend that these characteristics could be useful in developing an early job failure prediction system that could be utilized for dynamic rescheduling of the job scheduler and thus improving resource utilization in large-scale cloud data centers while reducing failure rates

    Waveform Fitting of Receiver Functions for Enhanced Retrieval of Crustal Structure in the Presence of Sediments

    Get PDF
    The receiver function technique is widely used to image crustal structure using P-to-S converted phases at the Moho discontinuity. However, the presence of sedimentary layer generates additional P-to-S conversions and reverberations, which can overprint the Moho phases and pose problems in imaging crustal structure with standard receiver function techniques. We introduce a robust two-step method that uses H-κ stacking to determine average thickness and Vp/Vs of the sedimentary layer, followed by waveform-fitting of the observed receiver function to constrain the average crustal thickness and sub-sediment Vp/Vs. We tested the method using both synthetic data and real-data from stations located on sedimentary layers in the Netherlands and USA. We show that the new method outperforms other common approaches in retrieving accurate Moho depth and sub-sediment Vp/Vs estimates, even in cases where the Moho phases are completely overprinted by large-amplitude phases related to sedimentary layers

    Bundle formation of sperm: Influence of environmental factors

    Get PDF
    Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times

    Influence of keratinized mucosa on the surgical therapeutical outcomes of peri-implantitis

    Full text link
    AimTo assess the impact of keratinized mucosa (KM) width around dental implants on surgical therapeutic outcomes when treating peri- implantitis.Material and MethodsSurgically treated peri- implantitis implants were divided into two groups (KM width  .01). Between T1 and T2, no major differences were noted on PPD reduction, BOP and MBL changes between the two groups. GEE modelling demonstrated that MBL severity prior to surgical therapy was a better predictor for implant survival than KM width.ConclusionSurgical outcome in treating peri- implantitis was influenced by the severity of bone loss present at the time of treatment and not by the presence of KM at the time of treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154633/1/jcpe13250.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154633/2/jcpe13250_am.pd

    Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Get PDF
    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material

    Diets based on soybean protein for Mediterranean fruit fly

    Get PDF
    O objetivo deste trabalho foi desenvolver dietas adequadas e econômicas para a criação massal de moscas de frutas do Mediterrâneo, Ceratitis capitata (Diptera: Tephritidae). Foram testados dietas com bagaço de beterraba açucareira, farelo de trigo, levedura de cerveja e outras dietas de farelo de trigo e proteína de soja prensada brasileira. Dietas compostas por proteína de soja apresentaram resultados positivos de recuperação de pupas, pesos de pupa e emergência de adultos. O bagaço de soja, na forma de pellet com 60% de proteína, pode ser um importante substituto de outras fontes de proteína.The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Diets containing sugar beet bagase, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagase in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein

    Exploring excited states of Pt(ii) diimine catecholates for photoinduced charge separation

    Get PDF
    The intense absorption in the red part of the visible range, and the presence of a lowest charge-transfer excited state, render Platinum(II) diimine catecholates potentially promising candidates for light-driven applications. Here, we test their potential as sensitisers in dye-sensitised solar cells and apply, for the first time, the sensitive method of photoacoustic calorimetry (PAC) to determine the efficiency of electron injection in the semiconductor from a photoexcited Pt(II) complex. Pt(II) catecholates containing 2,2′-bipyridine-4,4′-di-carboxylic acid (dcbpy) have been prepared from their parent iso-propyl ester derivatives, complexes of 2,2′-bipyridine-4,4′-di-C(O)OiPr, (COOiPr)2bpy, and their photophysical and electrochemical properties studied. Modifying diimine Pt(II) catecholates with carboxylic acid functionality has allowed for the anchoring of these complexes to thin film TiO2, where steric bulk of the complexes (3,5-ditBu-catechol vs. catechol) has been found to significantly influence the extent of monolayer surface coverage. Dye-sensitised solar cells using Pt(dcbpy)(tBu2Cat), 1a, and Pt(dcbpy)(pCat), 2a, as sensitisers, have been assembled, and photovoltaic measurements performed. The observed low, 0.02–0.07%, device efficiency of such DSSCs is attributed at least in part to the short excited state lifetime of the sensitisers, inherent to this class of complexes. The lifetime of the charge-transfer ML/LLCT excited state in Pt((COOiPr)2bpy)(3,5-di-tBu-catechol) was determined as 250 ps by picosecond time-resolved infrared spectroscopy, TRIR. The measured increase in device efficiency for 2a over 1a is consistent with a similar increase in the quantum yield of charge separation (where the complex acts as a donor and the semiconductor as an acceptor) determined by PAC, and is also proportional to the increased surface loading achieved with 2a. It is concluded that the relative efficiency of devices sensitised with these particular Pt(II) species is governed by the degree of surface coverage. Overall, this work demonstrates the use of Pt(diimine)(catecholate) complexes as potential photosensitizers in solar cells, and the first application of photoacoustic calorimetry to Pt(II) complexes in general
    corecore