23 research outputs found

    Abstract P-25: High-Resolution Cryo-Electron Microscopy Structure of the Staphylococcus Aureus Ribosome Brings to Light New Possible Drug Targets

    Get PDF
    Background: Antibiotic resistance is a growing worldwide problem. One of the major resistant bacterial pathogens is Staphylococcus aureus, which became a burden of healthcare systems around the world. To overcome the issue, more drug discovery studies are needed. One of the main antibiotic targets is a ribosome – the central hub of protein synthesis. Structural data of the ribosome and its features are a crucial milestone for the effective development of new drugs, especially using structure-based drug design approaches. Apart from many small structural features, ribosome possesses rRNA modifications that play a role in the fine-tuning of protein synthesis. Detailed species-specific structural data of the S. aureus ribosome is also a useful model for understanding the resistance mechanisms. This information could help with the design of new antibiotics and the upgrading of old ones. The data on S. aureus ribosomal RNA modifications and corresponding modification enzymes are very limited. Our aim was to improve the current models of the S. aureus ribosome by determining its structure with functional ligands at a much higher resolution - thereby creating a foundation for structure-based drug design experiments and research of new drug targets. Methods: The S. aureus ribosome complex consists of three components: ribosome, fMet-tRNAfMet, mRNA and 70S ribosome. The complex from purified components was formed in vitro and applied to cryo-EM grids. Data was collected at Titan Krios with Gatan K2 detector (IGBMC, France). The data was processed and modeled in Relion 2.1, Chimera, Coot, and Phenix. Results: We determined the cryo-EM reconstruction at 3.2 Å resolution of the S. aureus ribosome with P-site tRNA, messenger RNA. Based on the experimental map and existing bioinformatic data, we at the first time identified and assigned 10 modifications of S. aureus rRNA. We analyzed the positions of rRNA modifications and their possible functions. Conclusion: In this study, we describe our structure of S. aureus ribosome with functional ligands. The present model is the highest resolution and most precise that is available at the moment. We propose a set of methyltransferases as targets for future drug discovery studies. The proposed methyltransferases and corresponding modifications may play an important role in protein synthesis and its regulation

    Abstract P-21: The Investigation of S.aureus Ribosome-Binding Factor A Localization on the 30S Ribosomal Subunit by Cryo-Electron Microscopy

    Get PDF
    Background: Ribosome biogenesis is a complex process of ribosomal RNA and protein binding. Bacterial ribosome maturation and components involved in it are especially interesting, because they are widespread targets for antibiotics. A number of special protein factors facilitating the maturation of the 30S small ribosomal subunit are known. One of them is a ribosome-binding factor A (RbfA). This is a small (~14 kDa) protein with KH-domain organization distinguishing RNA binding proteins. Recent cryo-EM reconstruction of E.coli 30S-RbfA complex indicates that RbfA binds to 30S subunit on the central decoding region and promotes the switch from the immature state of h28 (neck) to mature state. RbfA interacts with 3`-end of 16S rRNA on mRNA exit channel and stabilizes the conformation of the region between h28, h44/h45 linker and 3`-end. Methods: Pure S.aureus RbfA was obtained by homologous expression in E.coli BL21 strain followed by Ni-NTA and gel filtration. The 30S subunits were obtained by dissociation of the S.aureus 70S ribosomes in a sucrose gradient (0-30%). We performed 30S subunit and RbfA complex reconstitution, sample and grid preparation. Data was collected on Talos Arctica, Falcon 2 detector (FEI Company/Thermo Fisher). Results: The 30S-RbfA complex density map with average resolution ~ 3.5 Å (FSC=0.143) was obtained. In comparison with the free subunit map (EMD 23052) we observed an extra density on the neck region near the decoding center region. Conclusion: Obtained data is correlated with recent structural results of the homologous E.coli RbfA. We consider that S.aureus RbfA binds to the 30S subunit at the same region. The next step of our structural research is building the model of S.aureus 30S-RbfA complex

    Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach.

    Get PDF
    Funder: The Russian Government Program of Competitive Growth of Kazan Federal UniversityFor the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections

    Etudes structurales du ribosome de Staphylococcus aureus

    No full text
    The ribosome is a large cellular machinery that performs the protein synthesis in every living cell. Therefore, the ribosome is one of the major targets of naturally produced antibiotics, which can kill bacterial cells by blocking protein synthesis. However, some bacteria are resistant to these antibiotics due to small modifications of their ribosomes. Among them, Staphylococcus aureus (S. aureus) is a severe pathogen that causes numerous infections in humans. The crystal structures of complexes of antibiotics with ribosomes from Gram-negative non-pathogenic non-resistant bacteria have provided unparalleled insight into mechanisms of antibiotics action. However, the structure of the ribosome from Gram-positive pathogenic and highly resistant bacteria such as S. aureus was still unidentified.In this study we present the first high resolution structure of the ribosome from S. aureus solved at 3.9 Å by cryo-electron microscopy (cryo-EM). We demonstrate several features of the ribosome organization which are unique for Gram-positive bacteria. We also describe the protocol of purification and crystallization of S. aureus ribosome for future cryo-EM and X-ray crystallography studies.All the results obtained in this work will help to describe S. aureus ribosome and its functional complexes at the atomic level in the nearest future. The combination of X-ray crystallography and cryo-EM methods will help to achieve this aim. The obtained results will provide a foundation for the development of new compounds against the pathogenic and extremely resistant bacteria S. aureus.Le ribosome est une machinerie cellulaire importante impliquée dans la synthèse protéique de toute cellule vivante. Par conséquent, le ribosome est l'une des principales cibles des antibiotiques naturels, qui sont capables de tuer les cellules bactériennes en bloquant la synthèse protéique. Toutefois, certaines bactéries sont résistantes à ces antibiotiques en raison de petites modifications au niveau de leurs ribosomes. Entre autres, Staphylococcus aureus (S. aureus) est un agent pathogène responsable de nombreuses infections graves chez l’Homme. Les structures cristallines d'antibiotiques en complexe avec des ribosomes de bactéries non-résistantes, non-pathogènes, Gram négatives ont fourni un aperçu sans précédent des mécanismes d'action de ces antibiotiques. Cependant, aucune structure de ribosome de bactéries pathogènes, hautement résistantes, Gram positives telles que S. aureus n’a encore été identifiée.Dans cette étude, nous présentons la première structure de ribosome de S. aureus à haute résolution (3.9 Å) résolue par cryo-microscopie électronique (cryo-ME). Nous mettons en évidence plusieurs caractéristiques de l'organisation des ribosomes spécifiques des bactéries Gram-positives. Nous décrivons également le protocole de purification et de cristallisation du ribosome de S. aureus pour de futures études de cryo-ME et de cristallographie aux rayons X.Tous les résultats obtenus dans ces travaux, faciliteront la description à l’échelle atomique du ribosome de S. aureus et ses complexes fonctionnels’ ’dans un futur proche. La combinaison des méthodes de cristallographie aux rayons X et de cryo-ME aidera à atteindre cet objectif. Les résultats obtenus serviront de base pour le développement de nouveaux composés contre la bactérie pathogène et extrêmement résistante qu’est S. aureus

    Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    No full text
    International audiencePosttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism

    Translation dynamics in human cells visualized at high-resolution reveal cancer drug action

    No full text
    Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, yet their distribution in actively translating human cells remains elusive. Here, we optimized a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with a local resolution of up to 2.5 angstroms. These structures revealed the distribution of functional states of the elongation cycle, a Z tRNA binding site and the dynamics of ribosome expansion segments. In addition, we visualized structures of Homoharringtonine, a drug for chronic myeloid leukemia treatment, within the active site of the ribosome and found that its binding reshaped the landscape of translation. Overall, our work demonstrates that structural dynamics and drug effects can be assessed at near-atomic detail within human cells

    Cryo‐EM structure of the ribosome functional complex of the human pathogen Staphylococcus aureus at 3.2 Å resolution

    No full text
    International audienceStaphylococcus aureus is a bacterial pathogen and one of the leading causes of healthcare-acquired infections in the world. The growing antibiotic resistance of S. aureus obliges us to search for new drugs Accepted Article This article is protected by copyright. All rights reserved and treatments. As the majority of antibiotics target the ribosome, knowledge of its detailed structure is crucial for drug development. Here, we report the Cryo-EM reconstruction at 3.2 Å resolution of the S. aureus ribosome with P-site tRNA, messenger RNA and ten RNA modification sites previously not assigned or visualized. The resulting model is the most precise and complete high-resolution structure to date of the S. aureus 70S ribosome with functional ligands
    corecore