12 research outputs found

    Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

    Get PDF
    Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes

    Characterization of Detergent-Insoluble Complexes Containing the Familial Alzheimer's Disease-Associated Presenilins.

    No full text
    Many cases of early-onset familial Alzheimer’s disease have been linked to mutations within two genes encoding the proteins presenilin-1 and presenilin-2. The presenilins are 48-56-kDa proteins that can be proteolytically cleaved to generate an N-terminal fragment (25-35 kDa) and a C-terminal fragment (17-20 kDa). The N- and C-terminal fragments of presenilin-1, but not full-length presenilin-1, were readily detected in both human and mouse cerebral cortex and in neuronal and glioma cell lines. In contrast, presenilin-2 was detected almost exclusively in cerebral cortex as the full-length molecule with a molecular mass of 56 kDa. The association of the presenilins with detergent-insoluble, low-density membrane microdomains, following the isolation of these structures from cerebral cortex by solubilization in Triton X-100 and subsequent sucrose density gradient centrifugation, was also examined. A minor fraction (10%) of both the N- and C-terminal fragments of presenilin-1 was associated with the detergent-insoluble, low-density membrane microdomains, whereas a considerably larger proportion of full-length presenilin-2 was present in the same membrane microdomains. In addition, a significant proportion of full-length presenilin-2 was present in a high-density, detergent-insoluble cytoskeletal pellet enriched in β-actin. The presence of the presenilins in detergent-insoluble, low-density membrane microdomains indicates a possible role for these specialized regions of the membrane in the lateral separation of Alzheimer’s disease-associated proteins within the lipid bilayer and/or in the distinct functions of these proteins

    The Role of γ-Secretase Activating Protein (GSAP) and Imatinib in the Regulation of γ-Secretase Activity and Amyloid-β Generation

    No full text
    gamma-Secretase is a large enzyme complex comprising presenilin, nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1 that mediates the intramembrane proteolysis of a large number of proteins including amyloid precursor protein and Notch. Recently, a novel gamma-secretase activating protein (GSAP) was identified that interacts with gamma-secretase and the C-terminal fragment of amyloid precursor protein to selectively increase amyloid-beta production. In this study we have further characterized the role of endogenous and exogenous GSAP in the regulation of gamma-secretase activity and amyloid-beta production in vitro. Knockdown of GSAP expression in N2a cells decreased amyloid-beta levels. In contrast, overexpression of GSAP in HEK cells expressing amyloid precursor protein or in N2a cells had no overt effect on amyloid-beta generation. Likewise, purified recombinant GSAP had no effect on amyloid-beta generation in two distinct in vitro gamma-secretase assays. In subsequent cellular studies with imatinib, a kinase inhibitor that reportedly prevents the interaction of GSAP with the C-terminal fragment of amyloid precursor protein, a concentration-dependent decrease in amyloid-beta levels was observed. However, no interaction between GSAP and the C-terminal fragment of amyloid precursor protein was evident in co-immunoprecipitation studies. In addition, subchronic administration of imatinib to rats had no effect on brain amyloid-beta levels. In summary, these findings suggest the roles of GSAP and imatinib in the regulation of gamma-secretase activity and amyloid-beta generation are uncertain

    Focal expression of adeno-associated viral-mutant tau induces widespread impairment in an APP mouse model

    No full text
    Adeno-associated virus serotype 6 (AAV6) viral vectors encoding mutant and normal tau were used to produce focal tau pathology. Two mutant forms of tau were used; the P301S tau mutation is associated with neurofibrillary tangle formation in humans, and the 3PO mutation leads to rapid tau aggregation and is associated with pathogenic phosphorylation and cytotoxicity in vitro. We show that adeno-associated viral injection into entorhinal cortex of normal and tau knockout animals leads to local overexpression of tau, and the presence of human tau in axons projecting to and emanating from the entorhinal cortex. Starting at 2 months and increasing by 6 months post-injection neurons expressing mutant tau developed hyperphosphorylated tau pathology, in addition to dystrophic neurites. There was neuronal loss in tau-expressing regions, which was similar in normal and in TASTPM mice injected with mutant tau. There was neuroinflammation around plaques, and in regions expressing mutant tau. We saw no evidence that mutant tau had affected amyloid-beta pathology or vice versa. Morris water maze behavioral tests demonstrated mild memory impairment attributable to amyloid-beta pathology at 2 and 4 months, with severe impairment at 6 months in animals receiving adeno-associated viral-3PO. Therefore, TASTPM mice injected with mutant tau displayed many of the main features characteristic of human Alzheimer's disease patients and might be used as a model to test new drugs to ameliorate clinical features of Alzheimer's disease

    Focal expression of adeno-associated viral-mutant tau induces widespread impairment in an APP mouse model

    No full text
    Adeno-associated virus serotype 6 (AAV6) viral vectors encoding mutant and normal tau were used to produce focal tau pathology. Two mutant forms of tau were used; the P301S tau mutation is associated with neurofibrillary tangle formation in humans, and the 3PO mutation leads to rapid tau aggregation and is associated with pathogenic phosphorylation and cytotoxicity in vitro. We show that adeno-associated viral injection into entorhinal cortex of normal and tau knockout animals leads to local overexpression of tau, and the presence of human tau in axons projecting to and emanating from the entorhinal cortex. Starting at 2 months and increasing by 6 months post-injection neurons expressing mutant tau developed hyperphosphorylated tau pathology, in addition to dystrophic neurites. There was neuronal loss in tau-expressing regions, which was similar in normal and in TASTPM mice injected with mutant tau. There was neuroinflammation around plaques, and in regions expressing mutant tau. We saw no evidence that mutant tau had affected amyloid-beta pathology or vice versa. Morris water maze behavioral tests demonstrated mild memory impairment attributable to amyloid-beta pathology at 2 and 4 months, with severe impairment at 6 months in animals receiving adeno-associated viral-3PO. Therefore, TASTPM mice injected with mutant tau displayed many of the main features characteristic of human Alzheimer's disease patients and might be used as a model to test new drugs to ameliorate clinical features of Alzheimer's disease.</p
    corecore