486 research outputs found

    Isolation of 76Br from irradiated Cu276Se targets using dry distillation: evaluations and improvement for routine production

    Get PDF
    Introduction 76Br is of interest for in vivo PET imaging applications. Its relatively long half-life (16.1 h) allows use not only on small molecules but also proteins which have slow excretion as carrier molecules. Irradiation using a low energy proton beam (~ 20 MeV) on an enriched Cu276Se target, followed by dry distillation with thermal chromatography, is one of the best methods to obtain sufficient amounts of 76Br for clinical applications1,2. However, the thermal chromatography is plagued by poor reproducibility and appears unsuitable for automation of its production, leading us to remove the thermal chroma-tography from the dry distillation. In this investigation we employed H2O solution to collect 76Br and optimized the distillation condition using a small amount of 77Br (57.0 h). We also produced large amount of 76Br under the optimized conditions to evaluate the dry distillation method. Material and Methods Target preparation and dry distillation were conducted based on the methods described in previous reports1,2. To produce 77Br, Cu2natSe target was irradiated with 20 MeV proton beams (5 µA) accelerated by AVF cyclotron in the Japan Atomic Energy Agency. The following two systems were used in the dry distillation optimization studies; (1) an initial system was composed of two furnaces, a main and an auxiliary furnace. Temperature of each furnace was set at 1050 °C (main) and 200 °C (auxiliary) respectively; (2) the second system was made of one large furnace composed of heating and cooling area. Temperature of the heating area was varied from 1050 to 1120 °C. In both systems PTFE tubing, leading to a H2O solution (15 mL), was inserted into the apparatus. The irradiated target was heated under streaming Ar gas (30 mL/min.). An enriched Cu276Se target (76Se enrichment: 99.67%) was used for 76Br production. Radioactivity was measured on a high-purity germanium (HPGe) detector coupled to a multichannel analyzer. TLC analyses were conducted on Al2O3 plates (Merck) using 7:1 acetone:H2O as the eluting solvent. Results and Conclusion Low efficiency (33 %) of 77Br recovery was ob-served in the initial system. Distribution of radioactivity inside the apparatus showed that 35 % was trapped in the PTFE tube and the quartz tube. The recovery yield was increased up to 54 % when the auxiliary furnace was turned off, indicating that the temperature gradient inside the quartz tube is suitable to carry 77Br effectively to the H2O trap. We initially used a quartz boat to place the irradiated target in the furnace, but found that using a reusable tungsten backing was better. However, we found that recovery yield was dramatically reduced to 18 %. The studies where the temperature was varied showed that releasing efficiency was increased up to 100 % at the temperature of 1120 °C. Good recovery yield (~ 77 %) was achieved after optimizing the temperature gradient (FIG. 1b). Using the optimized setup, 76Br production runs (n = 6) have been conducted, allowing us to recover up to 39.8 MBq/µAh (EOB) of 76Br. High specific activity (~4400 GBq/µmol) was obtained in the final solution. TLC analysis showed that chemical form obtained was bromide. We concluded that the dry distillation using H2O trap is capable of providing enough high purity 76Br for clinical applications

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below \approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Dynamic and spectral mixing in nanosystems

    Full text link
    In the framework of simple spin-boson Hamiltonian we study an interplay between dynamic and spectral roots to stochastic-like behavior. The Hamiltonian describes an initial vibrational state coupled to discrete dense spectrum reservoir. The reservoir states are formed by three sequences with rationally independent periodicities typical for vibrational states in many nanosize systems. We show that quantum evolution of the system is determined by a dimensionless parameter which is characteristic number of the reservoir states relevant for the initial vibrational level dynamics. Our semi-quantitative analytic results are confirmed by numerical solution of the equation of motion. We anticipate that predicted in the paper both kinds of stochastic-like behavior (namely, due to spectral mixing and recurrence cycle dynamic mixing) can be observed by femtosecond spectroscopy methods in nanosystems.Comment: 6 pages, 4 figure

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap
    corecore