637 research outputs found
Effects of environment on microhardness of magnesium oxide
Micro-Vickers hardness measurements of magnesium oxide single crystals were conducted in various environments. These environments included air, nitrogen gas, water, mineral oil with or without various additives, and aqueous solutions with various pH values. Indentations were made on the (100) plane with the diagonals of the indentation in the (100) direction. The results indicate that a sulfur containing additve in mineral oil increased hardness, a chlorine containing additive in mineral oil decreased hardness, and aqueous solutions of hydrogen chloride decreased hardness. Other environments were found to have little effect on hardness. Mechanically polished surfaces showed larger indentation creep than did as-cleaved surfaces
Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces
X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface
Surface effects of corrosive media on hardness, friction, and wear of materials
Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused high friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing, NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron
Pressure-induced anomalous magnetism and unconventional superconductivity in CeRhIn5 : 115In-NQR Study under Pressure
We report In nuclear-quadrupole-resonance (NQR) measurements of the
pressure()-induced superconductor CeRhIn in the antiferromagnetic (AF)
and superconducting (SC) states. In the AF region, the internal field
at the In site is substantially reduced from kOe at P=0 to 0.39
kOe at GPa, while the N\'eel temperature slightly changes with
increasing . This suggests that either the size in the ordered moment
or the angle between the direction of and
the tetragonal axis is extrapolated to zero at GPa at
which a bulk SC transition is no longer emergent. In the SC state at
GPa, the nuclear spin-lattice relaxation rate has revealed a
dependence without the coherence peak just below , giving evidence
for the unconventional superconductivity. The dimensionality of the magnetic
flutuations in the normal state are also discussed.Comment: 8pages,4figures,submitted to Phys. Rev. B. Rapid
Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies
Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)
studies were performed in the recently discovered UCoGe, in which the
ferromagnetic and superconducting (SC) transitions were reported to occur at
K and K (N. T. Huy {\it et al.}, Phys.
Rev. Lett. {\bf 99} (2007) 067006), in order to investigate the coexistence of
ferromagnetism and superconductivity as well as the normal-state and SC
properties from a microscopic point of view. From the nuclear spin-lattice
relaxation rate and Knight-shift measurements, we confirmed that
ferromagnetic fluctuations which possess a quantum critical character are
present above and the occurrence of ferromagnetic transition at
2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal
state show that UCoGe is an itinerant ferromagnet similar to ZrZn and
YCo. The onset SC transition was identified at K, below
which of 30 % of the volume fraction starts to decrease due to the
opening of the SC gap. This component of , which follows a
dependence in the temperature range of K, coexists with the
magnetic components of showing a dependence below .
From the NQR measurements in the SC state, we suggest that the self-induced
vortex state is realized in UCoGe.Comment: 5 pages, 7 figures. submitted to J. Phys. Soc. Jpn. To appear in J.
Phys. Soc. Jp
New Lithium Measurements in Metal-Poor Stars
We provide *lambda*6708 Li 1 measurements in 37 metal-poor stars, most of
which are poorly-studied or have no previous measurements, from high-resolution
and high-S/N spectroscopy obtained with the McDonald Observatory 2.1m and 2.7m
telescopes. The typical line strength and abundance uncertainties, confirmed by
the thinness of the Spite plateau manifested by our data and by comparison with
previous measurements, are <=4 mAng and <=0.07-0.10 dex respectively. Two rare
moderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613, with
significantly depleted but still detectable Li are identified; future light
element determinations in the more heavily depeleted HIP 40613 may provide
constraints on the Li depletion mechanism acting in this star. We note two
moderately metal-poor and slightly evolved stars, HIP 105888 and G265-39, that
appear to be analogs of the low-Li moderately metal-poor subgiant HD 201889.
Preliminary abundance analysis of G 265-39 finds no abnormalities that suggest
the low Li content is associated with AGB mass-transfer or deep mixing and
p-capture. We also detect line doubling in HIP 4754, heretofore classified as
SB1.Comment: Accepted for publication in PASP, volume 912 (Feb 2012) 15 pages, 3
figures, 2 table
The Frontier Fields Lens Modeling Comparison Project
Gravitational lensing by clusters of galaxies offers a powerful probe of
their structure and mass distribution. Deriving a lens magnification map for a
galaxy cluster is a classic inversion problem and many methods have been
developed over the past two decades to solve it. Several research groups have
developed techniques independently to map the predominantly dark matter
distribution in cluster lenses. While these methods have all provided
remarkably high precision mass maps, particularly with exquisite imaging data
from the Hubble Space Telescope (HST), the reconstructions themselves have
never been directly compared. In this paper, we report the results of comparing
various independent lens modeling techniques employed by individual research
groups in the community. Here we present for the first time a detailed and
robust comparison of methodologies for fidelity, accuracy and precision. For
this collaborative exercise, the lens modeling community was provided simulated
cluster images -- of two clusters Ares and Hera -- that mimic the depth and
resolution of the ongoing HST Frontier Fields. The results of the submitted
reconstructions with the un-blinded true mass profile of these two clusters are
presented here. Parametric, free-form and hybrid techniques have been deployed
by the participating groups and we detail the strengths and trade-offs in
accuracy and systematics that arise for each methodology. We note in conclusion
that lensing reconstruction methods produce reliable mass distributions that
enable the use of clusters as extremely valuable astrophysical laboratories and
cosmological probes.Comment: 38 pages, 25 figures, submitted to MNRAS, version with full
resolution images can be found at
http://pico.bo.astro.it/~massimo/papers/FFsims.pd
Unique Spin Dynamics and Unconventional Superconductivity in the Layered Heavy Fermion Compound CeIrIn_5:NQR Evidence
We report measurements of the ^{115}In nuclear spin-lattice relaxation rate
(1/T_1) between T=0.09 K and 100 K in the new heavy fermion (HF) compound
CeIrIn_5. At 0.4 K < T < 100 K, 1/T_1 is strongly T-dependent, which indicates
that CeIrIn_5 is much more itinerant than known Ce-based HFs. We find that
1/T_1T, subtracting that for LaIrIn_5, follows a 1/(T+\theta)^{3/4} variation
with \theta=8 K. We argue that this novel feature points to anisotropic, due to
a layered crystal structure, spin fluctuations near a magnetic ordering. The
bulk superconductivity sets in at 0.40 K below which the coherence peak is
absent and 1/T_1 follows a T^3 variation, which suggests unconventional
superconductivity with line-node gap.Comment: minor changes, appeared in PRL (4 pages, 4 figures
Magnetism, Critical Fluctuations and Susceptibility Renormalization in Pd
Some of the most popular ways to treat quantum critical materials, that is,
materials close to a magnetic instability, are based on the Landau functional.
The central quantity of such approaches is the average magnitude of spin
fluctuations, which is very difficult to measure experimentally or compute
directly from the first principles. We calculate the parameters of the Landau
functional for Pd and use these to connect the critical fluctuations beyond the
local-density approximation and the band structure.Comment: Replaced with the revised version accepted for publication.
References updated, errors corrected, other change
Novel critical exponent of magnetization curves near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La)
We report a novel critical exponent delta=3/2 of magnetization curves
M=H^{1/delta} near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3
(A = Ca, La0.5Na0.5, and La), which the mean field theory of the
Ginzburg-Landau-Wilson type fails to reproduce. The effect of dirty
ferromagnetic spin fluctuations might be a key.Comment: 4 pages, 5 figure
- …