160 research outputs found

    Thrombosis and Inflammation-A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C

    Get PDF
    Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathway-inhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAG-like vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.Peer reviewe

    Targeted Lipidomics for Characterization of PUFAs and Eicosanoids in Extracellular Vesicles

    Get PDF
    Lipids are increasingly recognized as bioactive mediators of extracellular vesicle (EV) functions. However, while EV proteins and nucleic acids are well described, EV lipids are insufficiently understood due to lack of adequate quantitative methods. We adapted an established targeted and quantitative mass spectrometry (LC-MS/MS) method originally developed for analysis of 94 eicosanoids and seven polyunsaturated fatty acids (PUFA) in human plasma. Additionally, the influence of freeze–thaw (FT) cycles, injection volume, and extraction solvent were investigated. The modified protocol was applied to lipidomic analysis of differently polarized macrophage-derived EVs. We successfully quantified three PUFAs and eight eicosanoids within EVs. Lipid extraction showed reproducible PUFA and eicosanoid patterns. We found a particularly high impact of FT cycles on EV lipid profiles, with significant reductions of up to 70%. Thus, repeated FT will markedly influence analytical results and may alter EV functions, emphasizing the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs. EV lipid profiles differed largely depending on the polarization of the originating macrophages. Particularly, we observed major changes in the arachidonic acid pathway. We emphasize the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs

    Evaluation of Plaque Stability of Advanced Atherosclerotic Lesions in Apo E-Deficient Mice after Treatment with the Oral Factor Xa Inhibitor Rivaroxaban

    Get PDF
    Aim. Thrombin not only plays a central role in thrombus formation and platelet activation, but also in induction of inflammatory processes. Activated factor X (FXa) is traditionally known as an important player in the coagulation cascade responsible for thrombin generation. We assessed the hypothesis that rivaroxaban, a direct FXa inhibitor, attenuates plaque progression and promotes stability of advanced atherosclerotic lesions in an in vivo model. Methods and Results. Rivaroxaban (1 or 5 mg/kg body weight/day) or standard chow diet was administered for 26 weeks to apolipoprotein E-deficient mice (n = 20 per group) with already established atherosclerotic lesions. There was a nonsignificant reduction of lesion progression in the high-concentration group, compared to control mice. FXa inhibition with 5 mg Rivaroxaban/kg/day resulted in increased thickness of the protective fibrous caps (12.3 ± 3.8 μm versus 10.1 ± 2.7 μm; P < .05), as well as in fewer medial erosions and fewer lateral xanthomas, indicating plaque stabilizing properties. Real time-PCR from thoracic aortas revealed that rivaroxaban (5 mg/kg/day) treatment reduced mRNA expression of inflammatory mediators, such of IL-6, TNF-α, MCP-1, and Egr-1 (P < .05). Conclusions. Chronic administration of rivaroxaban does not affect lesion progression but downregulates expression of inflammatory mediators and promotes lesion stability in apolipoprotein E-deficient mice

    Methodological utility of chemerin as a novel biomarker of immunity and metabolism

    Get PDF
    Chemerin is a recently discovered adipokine with inflammatory and metabolic actions relevant for chronic disease development. However, evidence from human research on the role of chemerin in chronic disease risk is still lacking. We assessed the reliability of plasma chemerin concentrations measured on two occasions over a 4-month period in 207 apparently healthy participants. In addition, we explored the cross-sectional associations between chemerin and inflammatory biomarkers using Spearman partial correlation and multivariable linear regression analyses. Intra-individual reproducibility of chemerin measurements was assessed by calculating intraclass correlation coefficients (ICCs) and exploration of Bland–Altman plots. Reliability analyses revealed good reproducibility of chemerin measurements (ICC: 0.72 (95%-CI 0.65, 0.78)). Visual inspection of Bland–Altman plots confirmed that the two time point measurements had a high level of agreement. In correlation analyses, chemerin was positively correlated with adiposity measures (body mass index and waist circumference). In addition, independent of adiposity measures, chemerin was correlated with the biomarkers C-reactive protein, fatty acid-binding protein 4 and progranulin (Rho-s ranging from 0.23 to 0.37). In multivariable linear regression analysis, a combination of correlated factors including body mass index, waist circumference, C-reactive protein, progranulin and fatty acid- binding protein-4 explained 28.0% of chemerin concentrations. These findings demonstrate methodological utility of chemerin concentrations in population- based research setting. Human studies are highly warranted in order to provide further insights into the role of chemerin as a biomarker linking immunity and metabolism in relation to chronic disease risk

    Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children

    Get PDF
    Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease

    Osteocalcin Is Independently Associated with C-Reactive Protein during Lifestyle-Induced Weight Loss in Metabolic Syndrome

    Get PDF
    Bone-derived osteocalcin has been suggested to be a metabolic regulator. To scrutinize the relation between osteocalcin and peripheral insulin sensitivity, we analyzed changes in serum osteocalcin relative to changes in insulin sensitivity, low-grade inflammation, and bone mineral density following lifestyle-induced weight loss in individuals with metabolic syndrome (MetS). Participants with MetS were randomized to a weight loss program or to a control group. Before and after the 6-month intervention period, clinical and laboratory parameters and serum osteocalcin levels were determined. Changes in body composition were analyzed by dual-energy X-ray absorptiometry (DXA). In participants of the intervention group, weight loss resulted in improved insulin sensitivity and amelioration of inflammation. Increased serum levels of osteocalcin correlated inversely with BMI (r = −0.63; p < 0.001), total fat mass (r = −0.58, p < 0.001), total lean mass (r = −0.45, p < 0.001), C-reactive protein (CRP) (r = −0.37; p < 0.01), insulin (r = −0.4; p < 0.001), leptin (r = −0.53; p < 0.001), triglycerides (r = −0.42; p < 0.001), and alanine aminotransferase (ALAT) (r = −0.52; p < 0.001). Regression analysis revealed that osteocalcin was independently associated with changes in CRP but not with changes in insulin concentration, fat mass, or bone mineral density, suggesting that weight loss-induced higher serum osteocalcin is primarily associated with reduced inflammation

    Lack of the Lectin-like Domain of Thrombomodulin Worsens Shiga Toxin-Associated Hemolytic Uremic Syndrome in Mice

    Get PDF
    Abstract Shiga toxin (Stx)-producing Escherichia coli is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. The pathophysiology of renal microvascular thrombosis in Stx-HUS is still ill-defined. Based on evidence that abnormalities in thrombomodulin (TM), an anticoagulant endothelial glycoprotein that modulates complement and inflammation, predispose to atypical HUS, we assessed whether impaired TM function may adversely affect evolution of Stx-HUS. Disease was induced by coinjection of Stx2/LPS in wild-type mice (TMwt/wt) and mice that lack the lectin-like domain of TM (TMLeD/LeD), which is critical for its anti-inflammatory and cytoprotective properties. After Stx2/LPS, TMLeD/LeD mice exhibited more severe thrombocytopenia and renal dysfunction than TMwt/wt mice. Lack of lectin-like domain of TM resulted in a stronger inflammatory reaction after Stx2/LPS with more neutrophils and monocytes/macrophages infiltrating the kidney, associated with PECAM-1 and chemokine upregulation. After Stx2/LPS, intraglomerular fibrin(ogen) deposits were detected earlier in TMLeD/LeD than in TMwt/wt mice. More abundant fibrin(ogen) deposits were also found in brain and lungs. Under basal conditions, TMLeD/LeD mice exhibited excess glomerular C3 deposits, indicating impaired complement regulation in the kidney that could lead to local accumulation of proinflammatory products. TMLeD/LeD mice with HUS had a higher mortality rate than TMwt/wt mice. If applicable to humans, these findings raise the possibility that genetic or acquired TM defects might have an impact on the severity of microangiopathic lesions after exposure to Stx-producing E. coli infections and raise the potential for using soluble TM in the treatment of Stx-HUS

    Sex-Specific Causal Relations between Steroid Hormones and Obesity—A Mendelian Randomization Study

    Get PDF
    Steroid hormones act as important regulators of physiological processes including gene expression. They provide possible mechanistic explanations of observed sex-dimorphisms in obesity and coronary artery disease (CAD). Here, we aim to unravel causal relationships between steroid hormones, obesity, and CAD in a sex-specific manner. In genome-wide meta-analyses of four steroid hormone levels and one hormone ratio, we identified 17 genome-wide significant loci of which 11 were novel. Among loci, seven were female-specific, four male-specific, and one was sex-related (stronger effects in females). As one of the loci was the human leukocyte antigen (HLA) region, we analyzed HLA allele counts and found four HLA subtypes linked to 17-OH-progesterone (17-OHP), including HLA-B*14*02. Using Mendelian randomization approaches with four additional hormones as exposure, we detected causal effects of dehydroepiandrosterone sulfate (DHEA-S) and 17-OHP on body mass index (BMI) and waist-to-hip ratio (WHR). The DHEA-S effect was stronger in males. Additionally, we observed the causal effects of testosterone, estradiol, and their ratio on WHR. By mediation analysis, we found a direct sex-unspecific effect of 17-OHP on CAD while the other four hormone effects on CAD were mediated by BMI or WHR. In conclusion, we identified the sex-specific causal networks of steroid hormones, obesity-related traits, and CAD

    Revisited Upper Reference Limits for Highly Sensitive Cardiac Troponin T in Relation to Age, Sex, and Renal Function

    Get PDF
    (1) Background: Highly sensitive cardiac troponin T (hs-cTnT) plays an essential role in the diagnosis of myocardial injury. The upper reference limit of the respective assay is generally applied, irrespective of age, renal function, or sex. We aimed to identify age-adjusted and sex-adjusted upper reference limits in relation to renal function in a large population-based cohort without cardiac diseases. (2) Methods: We included 5428 subjects of the population-based LIFE-Adult cohort, free of diagnosed cardiac diseases. Sex-adjusted and age-adjusted 99th percentiles for hs-cTnT in subjects with preserved renal function were obtained. (3) Results: The hs-cTnT values were higher in men of all age groups. In both sexes, an increasing age positively correlated with higher hs-cTnT values. Hs-cTnT weakly correlated with serum creatinine. The three-dimensional analysis of age, creatinine, and hs-cTnT showed no relevant additional effect of creatinine on hs-cTnT. In men aged above 60 and women above 70, the calculated 99th percentiles clearly exceeded the commonly applied thresholds. (4) Conclusion: Age and sex have a major impact on the serum concentration of hs-cTnT, while renal function does not. We propose to consider age-adjusted and sex-adjusted reference values

    Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain

    Get PDF
    Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation—if any—remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and -sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and -sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans
    corecore