1,914 research outputs found

    Equation of State for Exclusion Statistics in a Harmonic Well

    Full text link
    We consider the equations of state for systems of particles with exclusion statistics in a harmonic well. Paradygmatic examples are noninteracting particles obeying ideal fractional exclusion statistics placed in (i) a harmonic well on a line, and (ii) a harmonic well in the Lowest Landau Level (LLL) of an exterior magnetic field. We show their identity with (i) the Calogero model and (ii) anyons in the LLL of an exterior magnetic field and in a harmonic well.Comment: latex file, 11 page

    Analytical theory for proton correlations in common water ice IhI_h

    Full text link
    We provide a fully analytical microscopic theory for the proton correlations in water ice IhI_h. We compute the full diffuse elastic neutron scattering structure factor, which we find to be in excellent quantitative agreement with Monte Carlo simulations. It is also in remarkable qualitative agreement with experiment, in the absence of any fitting parameters. Our theory thus provides a tractable analytical starting point to account for more delicate features of the proton correlations in water ice. In addition, it directly determines an effective field theory of water ice as a topological phase.Comment: 5 pages, 3 figure

    Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models

    Get PDF
    We report about two new rigorous results on the non-analytic properties of thermodynamic potentials at first order phase transition. The first one is valid for lattice models (d2d\geq 2) with arbitrary finite state space, and finite-range interactions which have two ground states. Under the only assumption that the Peierls Condition is satisfied for the ground states and that the temperature is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase transition point. The second result concerns Ising spins with Kac potentials Jγ(x)=γdϕ(γx)J_\gamma(x)=\gamma^d\phi(\gamma x), where 0<γ<10<\gamma<1 is a small scaling parameter, and ϕ\phi a fixed finite range potential. In this framework, we relate the non-analytic behaviour of the pressure at the transition point to the range of interaction, which equals γ1\gamma^{-1}. Our analysis exhibits a crossover between the non-analytic behaviour of finite range models (γ>0\gamma>0) and analyticity in the mean field limit (γ0\gamma\searrow 0). In general, the basic mechanism responsible for the appearance of a singularity blocking the analytic continuation is that arbitrarily large droplets of the other phase become stable at the transition point.Comment: 4 pages, 2 figure

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter

    Get PDF
    A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання термінальної задачі управління та синтезований параметризований закон управління в аналітичному вигляді, який залежить від змінного параметра глибини прогнозу. Досліджено особливості впливу величини параметра управління на точність досягнення кінцевої точки, дані рекомендації з вибору параметра для нівелювання помилки інерційних вимірювань. Синтез управління здійснюється методом переслідування ведучої точки за інформацією, отриманою інтегруванням вимірювань фактичного прискорення і містить помилку, характерну для акселерометрів

    Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles

    Full text link
    We give two formulations of exclusion statistics (ES) using a variable number of bosonic or fermionic single-particle states which depend on the number of particles in the system. Associated bosonic and fermionic ES parameters are introduced and are discussed for FQHE quasiparticles, anyons in the lowest Landau level and for the Calogero-Sutherland model. In the latter case, only one family of solutions is emphasized to be sufficient to recover ES; appropriate families are specified for a number of formulations of the Calogero-Sutherland model. We extend the picture of variable number of single-particle states to generalized ideal gases with statistical interaction between particles of different momenta. Integral equations are derived which determine the momentum distribution for single-particle states and distribution of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE

    Exclusion Statistics in a trapped two-dimensional Bose gas

    Full text link
    We study the statistical mechanics of a two-dimensional gas with a repulsive delta function interaction, using a mean field approximation. By a direct counting of states we establish that this model obeys exclusion statistics and is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure
    corecore