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We report about two new rigorous results on the non-analytic properties of thermodynamic po-
tentials at first order phase transition. The first one is valid for lattice models (d ≥ 2) with arbitrary
finite state space, and finite-range interactions which have two ground states. Under the only as-
sumption that the Peierls Condition is satisfied for the ground states and that the temperature
is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase
transition point. The second result concerns Ising spins with Kac potentials Jγ(x) = γdϕ(γx), where
0 < γ < 1 is a small scaling parameter, and ϕ a fixed finite range potential. In this framework,
we relate the non-analytic behaviour of the pressure at the transition point to the range of inter-
action, which equals γ−1. Our analysis exhibits a crossover between the non-analytic behaviour of
finite range models (γ > 0) and analyticity in the mean field limit (γ ↘ 0). In general, the basic
mechanism responsible for the appearance of a singularity blocking the analytic continuation is that
arbitrarily large droplets of the other phase become stable at the transition point.
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INTRODUCTION

The first theory of condensation originated with the
celebrated equation of state of van der Waals [1]:

(
p +

a

v2

)(
v − b

)
= RT . (1)

When complemented with the Maxwell Construction
(or “equal area rule”), (1) leads to isotherms describing
general characteristics of the liquid-vapor equilibrium,
including the existence of a critical temperature. The
isotherms obtained with the van der Waals-Maxwell
Theory have a very simple analytic structure: they are
analytic in a pure phase and have analytic continua-
tions along the liquid and gas branches, through the
transition points. These analytic continuations, which
were originally interpreted as describing the pressure of
metastable states, are provided by the original isotherm
given in (1).

The theoretical question of knowing whether the
results predicted by the van der Waals Theory can be
derived from first principles of Statistical Mechanics
remained a longstanding problem during a large part
of the twentieth century. The theories of Mayer [2] and
Yang-Lee [3] were decisive contributions to the theory of
phase transitions, but didn’t give an answer concerning
the delicate question of the analytic continuation at
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transition points. With regard to this latter property,
two scenarios were discussed in the fifties and sixties.

The first one was essentially based on the mean field
(or Bragg-Williams) approximation [4]. In the Ising
set-up mean field theory is usually described as the
Curie-Weiss model. In this approach, the interaction
is replaced by an infinite range and infinitely weak
potential. The central characteristic of the effective
model obtained after this approximation is that the
spatial positions of the particles don’t play any role. As
a consequence, an exact computation of the partition
function leads to the same behaviour as in the van der
Waals-Maxwell Theory: at low temperature, thermody-
namic potentials are analytic in a pure phase, and have
analytic continuation at transition points. Katsura [5]
conjectured that this scenario holds also for short range
models, like the Ising model (see also the discussion
below).

The second argument, totally different in spirit,
originated with the so called “droplet mechanism” of
the condensation phenomenon, proposed by Andreev [6],
Fisher [7] and Langer [8]. This mechanism, as opposed
to the mean field approximation, predicts that the finite-
ness of the range of interaction plays a crucial role in
the analytic properties of the thermodynamic potentials.
Namely, when the range of interaction is finite, droplets
of any size are stable at the condensation point, and
although the probability of occurrence of large droplets
is very small, it is their stability that yields a contri-
bution of the order k!

d
d−1 to the k-th derivative of the

pressure, which prevents an analytic continuation. Kunz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147946129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

and Souillard were led to the same conclusions after
having studied a similar model, related to percolation [9].

Subsequent papers on the subject, in which no definite
answer was given, include [10], [11], [12]. More recent
studies can also be found in [13], [14], [15].

RIGOROUS RESULTS

Isakov (1984): In dimension d ≥ 2, at low enough
temperature, the pressure of the Ising model in a mag-
netic field λ, p = p(λ), is infinitely differentiable at
λ = 0±, but has no analytic continuation from {λ < 0}
to {λ > 0} across λ = 0, or vice versa.

Isakov proved that the Taylor series of the pressure at
λ = 0± have zero convergence radius, by proving that

p(k)(0±) ∼ Ckk!
d

d−1 . (2)

In a second paper [17], Isakov tried to extend this result
to general two phase lattice models. He had, however, to
introduce hypotheses that are not easy to verify in con-
crete models. Weaker but conceptually related results,
on the absence of thermodynamic “metastable states”,
have been proved by Lanford and Ruelle [18]. Nowadays
metastability is treated as a dynamical phenomenon.
In this respect we mention an important paper by
Schonmann and Shlosman [19]. We now present our
results.

Two Phase Models. Consider a lattice model with fi-
nite state space at each site of Zd, d ≥ 2. Let H0 be a
hamiltonian with finite range periodic interaction, having
two periodic ground states ψ1, ψ2. We assume further-
more that the Peierls Condition is satisfied [20]. Let V
be a periodic potential with finite range interaction, so
that the perturbed hamiltonian

Hλ = H0 + λV (3)

splits the degeneracy of H0. That is, Hλ has a single
ground state ψ2 when λ < 0 and a single ground state
ψ1 when λ > 0. Denote by p = p(λ) the pressure of
the model (at inverse temperature β). Let δ > 0. The
general theory of Pirogov-Sinai [21] guarantees that if β
is large enough, then there exists λ∗(β) ∈ (−δ,+δ) such
that the pressure has a first order phase transition at
λ∗(β). Our first result [22] is the following:

Theorem 1 There exists β0 > 0 such that for all
β ≥ β0, the pressure is analytic in λ on (−δ, λ∗(β))
and (λ∗(β),+δ), but has no analytic continuation from
(−δ, λ∗(β)) to (λ∗(β), +δ) across λ∗(β) or vice-versa.

Kac Potentials and the van der Waals Limit. Con-
sider an Ising ferromagnet, with a spin σi ∈ {+1,−1} at
each site of Zd, d ≥ 2. Let ϕ : Rd → R+, supported by
the cube [−1, +1]d, such that

∫
ϕ(x)dx = 1 . (4)

Let 0 < γ < 1 be a small scaling parameter, and consider
the Kac potential Jγ(x) = γdϕ(γx), together with the
hamiltonian

H = −1
2

∑

i 6=j

Jγ(i− j)σiσj . (5)

Let fγ = fγ(m) denote the free energy of this model,
with fixed magnetization m ∈ [−1, +1]. The Theorem of
Lebowitz-Penrose [23] gives a closed form to the free en-
ergy in the van der Waals limit γ ↘ 0 (called sometimes
the Kac or mean field limit), and justifies the Maxwell
construction. Let f0(m) = limγ↘0 fγ(m). Then (see Fig-
ure 1)

f0(m) = convex envelope of
{
− 1

2
m2 − 1

β
I(m)

}
, (6)

where I(m) equals

I(m) = −1−m

2
log

1−m

2
− 1 + m

2
log

1 + m

2
. (7)

FIG. 1: The free energy in the van der Waals Limit.

When β > 1, f0(m) has a plateau [−m∗(β), +m∗(β)],
where m∗(β) is the positive solution of the mean field
equation m = tanh(βm). As a consequence of the
Lebowitz-Penrose Theorem, all the analytic properties
of the free energy are known explicitly after the van der
Waals limit: f0 is analytic on the branches (−1,−m∗(β))
and (+m∗(β), +1), and has analytic continuation along
the paths m ↗ −m∗(β), m ↘ +m∗(β). The analytic
continuation, which is unique, is given by the mean field
free energy − 1

2m2 − 1
β I(m). After the van der Waals

limit, the scenario is thus the same as in the van der
Waals-Maxwell Theory.

Consider the specific choice ϕ(x) = 2−d1(x), where 1(·)
is the indicator of the cube: 1(x) = 1 if x ∈ [−1,+1]d,
0 otherwise. For a fixed 0 < γ < 1, Jγ is finite range
and Theorem 1 can be used, but only for temperatures
β ≥ β0(γ), with limγ↘0 β0(γ) = +∞. Our result [24] is
given hereafter. It holds at low temperature, uniformly
in the range of interaction.
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Theorem 2 There exists β0, independent of γ, such that
for all β ≥ β0 and all 0 < γ < 1, the free energy fγ

is analytic on (−1,−m∗(β, γ)) and (+m∗(β, γ), +1), but
has no analytic continuation along the real paths m ↗
−m∗(β, γ), m ↘ +m∗(β, γ).

As opposed to the mean field behaviour, finite range
interactions, even of very long range, imply absence of
analytic continuation at transition points. A crucial
ingredient for the proof of Theorem 2 is the use of the
coarse-graining technique of Bovier and Zahradńık [25].

We study the pressure pγ = pγ(λ), in which the con-
straint on the magnetization is replaced by a magnetic
field λ. The pressure and free energy are related by a
Legendre transform:

fγ(m) = sup
λ

(
hm− pγ(λ)

)
. (8)

By the Theorem of Yang-Lee, pγ is analytic in λ on
{λ < 0} and {λ > 0}. Our main result is a precise char-
acterization of the properties of pγ along the path λ ↘ 0
(using symmetry, we need only consider fields λ > 0).

Theorem 3 There exists β0, independent of γ, such
that for all β ≥ β0 and all γ > 0, all the limits
p
(k)
γ (0+) = limλ↘0 p

(k)
γ (λ) exist, but the pressure has no

analytic continuation from {λ > 0} to {λ < 0} across
λ = 0. More precisely, there exists integers k1(γ), k2(γ),
k1(γ) < k2(γ), with limγ↘0 ki(γ) = +∞, such that

|p(k)
γ (0+)| ≤ Ck

1 k! when k ≤ k1(γ) , (9)

|p(k)
γ (0+)| ≥ Ck

2 k!
d

d−1 when k ≥ k2(γ) . (10)

The constant C1 is independent of γ and k, C2 =
C2(γ, β) > 0, and k1(γ) = γ−d.

That is, the large order derivatives reveal the non-
analytic feature of the singularity, although a signature
of the mean field (analytic) behaviour can be detected
in the low order derivatives. We have illustrated this
crossover on Figure 2.

p
(k)
γ (0±) ∼ k!

d
d−1

k1(γ) k2(γ)

p
(k)
γ (0±) ∼ k!

FIG. 2: The crossover in the derivatives of the pressure.

METHOD

The pressure has a singularity only in the thermo-
dynamic limit. However, we study the system in large
finite volumes, and obtain bounds on the derivatives
that are uniform in the volume. At the end we prove

that it is possible to interchange the operations of taking
the derivative and the thermodynamic limit.

The method used to obtain lower bounds on the deriva-
tives of the pressure at finite volume is inspired by the
technique of Isakov. Let Λ be a finite cube in Zd with a
fixed boundary condition, and Z(Λ) be the correspond-
ing partition function. One enumerates all possible con-
tours [26] inside Λ: Γ1, Γ2, . . . , Γn, in such a way that
V (Γi) ≤ V (Γj) when i ≤ j (V (Γi) denotes the volume
of the interior of the contour Γi). One then defines the
restricted partition functions Zi(Λ), i = 0, . . . , n. By
definition, Z0(Λ) is the partition function computed for a
system containing no contours, and Zi(Λ) is the partition
function computed for a system containing no contour Γj

with j > i. Obviously,

Z(Λ) = Z0(Λ)
n∏

i=1

Zi(Λ)
Zi−1(Λ)

. (11)

For the proof of Theorem 1, there is only the ground state
configuration contributing to Z0(Λ). For the proof of
Theorem 2, Z0(Λ) is the partition function of a restricted
phase, describing small local fluctuations of the ground
state. Let

uΛ(Γi) = log
Zi(Λ)

Zi−1(Λ)
. (12)

Notice that we have the fundamental relation

Zi(Λ) = Zi−1(Λ) + Z∗i−1(Λ) , (13)

where the contour Γi appears in each configuration con-
tributing to Z∗i−1(Λ). A precise analysis of the phase
diagram shows that λ 7→ uΛ(Γi)(λ) is analytic in a disc
Ui centered at λ = λ∗(β) (resp. λ = 0 for the Kac ferro-
magnet), with a radius of order V (Γi)−

1
d . In the domain

Ui, uΛ(Γi) can be represented as follows:

uΛ(Γi) = log
(
1 +

Z∗i−1(Λ)
Zi−1(Λ)

)
≡ log(1 + egΛ(Γi)) . (14)

The dependence of gΛ(Γi) on the volume Λ is weak.
Moreover, gΛ(Γi) can be decomposed into a surface term
and a volume term, like in the droplet model. Then, by
choosing a path of integration C ⊂ Ui,

ui(Λ)(k)(λ∗) =
k!
2πi

∫

C

ui(Λ)(λ)
(λ− λ∗)k+1

dλ . (15)

The observation of Isakov is that uΛ(Γi) ' egΛ(Γi) on
Ui, and that for a given large enough k, one can es-
timate precisely the Cauchy integral (15), for all large
enough contours, by a stationary phase method, choos-
ing suitably the path of integration C. In this way one
gets a contribution to the k-th derivative of the pressure
of order Akk!

d
d−1 . For the other contours, only an upper

bound can be obtained on the integral, of the same or-
der Bkk!

d
d−1 . The crucial point is therefore to have large

enough neighbourhoods Ui, in order to show that A > B.
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DISCUSSION

In the framework of Kac potentials, the role played by
the range of interaction in the analyticity properties of
the pressure can be clarified by the following discussion.
When λ ≥ 0, our analysis allows to decompose the
pressure in two distinct parts: pγ = rγ + qγ . On one
hand, rγ is constructed with the partition function
Z0(Λ) of (11), and describes a homogeneous phase with
positive magnetization, containing no droplets of the −
phase. When γ ↘ 0, rγ converges to the pressure of the
mean field model. On the other hand, qγ contains the
contributions from the droplets of the − phase, which
are all stable at λ = 0, and qγ = O(e−βγ−d

). Namely,
the main contribution to qγ comes from the smallest
droplets, which live on a coarse-grained lattice whose
cells have side length γ−1. Then, the pressure rγ behaves
analytically at λ = 0, i.e. rγ

(k)(0±) ∼ k! for all k, but
qγ is responsible for the absence of analytic continuation
at λ = 0, since qγ

(k)(0±) ∼ k!
d

d−1 for large enough
k. The combination of these two behaviours leads to
a crossover in the derivatives, as was shown in Theorem 3.

Our results also have an important consequence re-
garding the theory of condensation initiated by Mayer
[2]. In this theory, the pressure of a non-ideal gas is de-
scribed, near z = 0 (z is the fugacity), by a convergent
Taylor expansion, given by the Mayer series:

βp(z) =
∑

l≥1

blz
l (bl are the cluster coefficients) . (16)

The condensation point is defined to be the first sin-
gularity, say z∗M , encountered when (16) is continued
analytically along the positive real line z > 0. It was
suggested [4] that this method could actually lead to
a wrong determination of the condensation point: the
analytic continuation of the Mayer series might not
“see” the real transition point z∗c , situated somewhere
between 0 and z∗M : 0 < z∗c < z∗M . This is indeed the
case in the mean field approximation: the system does
not “see” the condensation point, since there are no
droplets of the liquid phase inside the gaseous phase. We
saw that if one suppresses the condensation mechanism
by retaining, in pγ = rγ + qγ , only the term rγ , then
there is an analytic continuation of the pressure. Our
analysis shows that the method initiated by Mayer for
determining the condensation point gives the correct
result for a large class of lattice gas models.

To conclude, we mention that the problem of know-
ing whether the pressure can be continued analytically
around the singularity, in the complex plane, remains
open. It is not clear, in this case, whether the droplet
models can be used as a guiding mechanism, even to give
a heuristic description [27].
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