210 research outputs found

    The cell biology of quiescent yeast – a diversity of individual scenarios

    Get PDF
    International audienceMost cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology

    Mitochondria reorganization upon proliferation arrest predicts individual yeast cell fate

    Get PDF
    International audienceMost cells spend the majority of their life in a non-proliferating state. When proliferation cessation is irreversible, cells are senescent. By contrast, if the arrest is only temporary, cells are defined as quiescent. These cellular states are hardly distinguishable without triggering proliferation resumption, hampering thus the study of quiescent cells properties. Here we show that quiescent and senescent yeast cells are recognizable based on their mitochondrial network morphology. Indeed, while quiescent yeast cells display numerous small vesicular mitochondria, senescent cells exhibit few globular mitochondria. This allowed us to reconsider at the individual-cell level, properties previously attributed to quiescent cells using population-based approaches. We demonstrate that cell's propensity to enter quiescence is not influenced by replicative age, volume or density. Overall, our findings reveal that quiescent cells are not all identical but that their ability to survive is significantly improved when they exhibit the specific reorganization of several cellular machineries

    Reversible cytoplasmic localization of the proteasome in quiescent yeast cells

    Get PDF
    The 26S proteasome is responsible for the controlled proteolysis of a vast number of proteins, including crucial cell cycle regulators. Accordingly, in Saccharomyces cerevisiae, 26S proteasome function is mandatory for cell cycle progression. In budding yeast, the 26S proteasome is assembled in the nucleus, where it is localized throughout the cell cycle. We report that upon cell entry into quiescence, proteasome subunits massively relocalize from the nucleus into motile cytoplasmic structures. We further demonstrate that these structures are proteasome cytoplasmic reservoirs that are rapidly mobilized upon exit from quiescence. Therefore, we have named these previously unknown structures proteasome storage granules (PSGs). Finally, we observe conserved formation and mobilization of these PSGs in the evolutionary distant yeast Schizosaccharomyces pombe. This conservation implies a broad significance for these proteasome reserves

    Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation

    Get PDF
    Like other eukaryotes, Saccharomyces cerevisiae spatially organizes its chromosomes within the nucleus. In G(1) phase, the yeast’s 32 telomeres are clustered into 6–10 foci that dynamically interact with the nuclear membrane. Here we show that, when cells leave the division cycle and enter quiescence, telomeres gather into two to three hyperclusters at the nuclear membrane vicinity. This localization depends on Esc1 but not on the Ku proteins. Telomere hypercluster formation requires the Sir complex but is independent of the nuclear microtubule bundle that specifically assembles in quiescent cells. Importantly, mutants deleted for the linker histone H1 Hho1 or defective in condensin activity or affected for histone H4 Lys-16 deacetylation are impaired, at least in part, for telomere hypercluster formation in quiescence, suggesting that this process involves chromosome condensation. Finally, we establish that telomere hypercluster formation is not necessary for quiescence establishment, maintenance, and exit, raising the question of the physiological raison d’être of this nuclear reorganization

    Prothrombotic Hemostasis Disturbances in Patients with Severe COVID-19:Individual daily data

    Get PDF
    This data article accompanies the manuscript entitled: "Prothrombotic Disturbances of hemostasis of Patients with Severe COVID-19: a Prospective Longitudinal Observational Cohort Study" submitted to by the same authors. We report temporal changes of plasma levels of an extended set of laboratory parameters during the ICU stay of the 21 COVID-19 patients included in the monocentre cohort: CRP, platelet count, prothrombin time; Clauss fibrinogen and clotting factors II, V and VIII levels, D-dimers, antithrombin activity, protein C, free protein S, total and free tissue factor pathway inhibitor, PAI-1 levels, von Willebrand factor antigen and activity, ADAMTS-13 (plasma levels); and of two integrative tests of coagulation (thrombin generation with ST Genesia) and fibrinolysis (global fibrinolytic capacity - GFC). Regarding hemostasis, we used double-centrifuged frozen citrated plasma prospectively collected after daily performance of usual coagulation tests. Demographic and clinical characteristics of patients and thrombotic and hemorrhagic complications were also collected from patient's electronic medical reports

    Roles and practices of general practitioners and psychiatrists in management of depression in the community

    Get PDF
    BACKGROUND: Little is known about depressed patients' profiles and how they are managed. The aim of the study is to compare GPs and psychiatrists for 1°) sociodemographic and clinical profile of their patients considered as depressed 2°) patterns of care provision. METHODS: The study design is an observational cross-sectional study on a random sample of GPs and psychiatrists working in France. Consecutive inclusion of patients seen in consultation considered as depressed by the physician. GPs enrolled 6,104 and psychiatrists 1,433 patients. Data collected: sociodemographics, psychiatric profile, environmental risk factors of depression and treatment. All clinical data were collected by participating physicians; there was no direct independent clinical assessment of patients to check the diagnosis of depressive disorder. RESULTS: Compared to patients identified as depressed by GPs, those identified by psychiatrists were younger, more often urban (10.5% v 5.4% – OR = 2.4), educated (42.4% v 25.4% – OR = 3.9), met DSM-IV criteria for depression (94.6% v 85.6% – OR = 2.9), had been hospitalized for depression (26.1% v 15.6% – OR = 2.0) and were younger at onset of depressive problems (all adjusted p < .001). No difference was found for psychiatric and somatic comorbidity, suicide attempt and severity of current depression. Compared to GPs, psychiatrists more often prescribed tricyclics and very novel antidepressants (7.8% v 2.3% OR = 5.0 and 6.8% v 3.0% OR = 3.8) with longer duration of antidepressant treatment. GPs' patients received more "non-conventional" treatment (8.8% v 2.4% OR = 0.3) and less psychotherapy (72.2% v 89.1% OR = 3.1) (all adjusted p < .001). CONCLUSION: Differences between patients mainly concerned educational level and area of residence with few differences regarding clinical profile. Differences between practices of GPs and psychiatrists appear to reflect more the organization of the French care system than the competence of providers

    Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy

    Get PDF
    Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics
    corecore