333 research outputs found
Characterization of a sulfide-oxidizing biofilm developed in a packed-column reactor
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially
designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor. [Int Microbiol 2007; 10(1):29-37
Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status
Danovaro, Roberto ... et al.-- 25 pages, 9 figures, 2 tablesMarine environmental monitoring has tended to focus on site-specific methods of investigation. These traditional methods have low spatial and temporal resolution and are relatively labor intensive per unit area/time that they cover. To implement the Marine Strategy Framework Directive (MSFD), European Member States are required to improve marine monitoring and design monitoring networks. This can be achieved by developing and testing innovative and cost-effective monitoring systems, as well as indicators of environmental status. Here, we present several recently developed methodologies and technologies to improve marine biodiversity indicators and monitoring methods. The innovative tools are discussed concerning the technologies presently utilized as well as the advantages and disadvantages of their use in routine monitoring. In particular, the present analysis focuses on: (i) molecular approaches, including microarray, Real Time quantitative PCR (qPCR), and metagenetic (metabarcoding) tools; (ii) optical (remote) sensing and acoustic methods; and (iii) in situ monitoring instruments. We also discuss their applications in marine monitoring within the MSFD through the analysis of case studies in order to evaluate their potential utilization in future routine marine monitoring. We show that these recently-developed technologies can present clear advantages in accuracy, efficiency and costThis manuscript is a result of DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status) project, funded by the European Union under the 7th Framework Programme, “The Ocean of Tomorrow” Theme (grant agreement no. 308392) (http://www.devotes-project.eu). Further financial assistance was provided to VS and ER by the European Union under the ENPI CBC Mediterranean Sea Basin Programme (Sustainability and Tourism in the Mediterranean—S&T Med Strategic Project)Peer Reviewe
Segmentally homologous neurons acquire two different terminal neuropeptidergic fates in the Drosophila nervous system
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. In this study, we identify the means by which segmentally homologous neurons acquire different neuropeptide fates in Drosophila. Ventral abdominal (Va)-neurons in the A1 segment of the ventral nerve cord express DH31 and AstA neuropeptides (neuropeptidergic fate I) by virtue of Ubx activity, whereas the A2-A4 Va-neurons express the Capa neuropeptide (neuropeptidergic fate II) under the influence of abdA. These different fates are attained through segment-specific programs of neural subtype specification undergone by segmentally homologous neurons. This is an attractive alternative by which Hox genes can shape Drosophila segmental neural architecture (more sophisticated than the previously identified binary “to live” or “not to live” mechanism). These data refine our knowledge of the mechanisms involved in diversifying neuronal identity within the central nervous systemThis study was supported by grant number: BFU2013-43858-
Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient
12 pages, 5 figures, 1 tableAerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient)This work was partly supported through the IGB Fellowship Program in Freshwater Science funded to IF. Sampling expedition to the African lakes was funded by the Spanish Ministry of Science and Innovation (CGL2010-11556-E). Antarctic samples were collected as part of the US NSF funded McMurdo Dry Valleys Long-Term Ecological Research Program (NSF-PLR 1115245). [...] HS work was supported by CNPq and FAPESP (Process: 2014/14139-3).Peer Reviewe
Presence of opportunistic oil-degrading microorganisms operating at the initial steps of oil extraction and handling
Hydrocarbon-degrading microorganisms from natural environments have been isolated and identified using culture-dependent or molecular techniques. However, there has been little research into the occurrence of microorganisms incorporated into crude oil in the initial steps of extraction and handling, which can reduce the quality of stored petroleum. In the present study, a packed-column reactor filled with autoclaved perlite soaked with crude oil was subjected to a continuous flow of sterile medium in order to determine the presence of potential hydrocarbon degraders. Microorganisms developed on the surface of the perlite within a period of 73 days. DNA was extracted from the biofilm and then PCR-amplified using 16S rRNA bacterial and archaeal primers and 18S rRNA eukaryotic primers. No amplification was obtained using archaeal primers. However, denaturing gradient gel electrophoresis (DGGE) revealed the presence of unique bands indicating bacterial and eukaryotic amplification. Excision of these bands, sequencing, and subsequent BLAST search showed that they corresponded to Bacillus sp. and Aspergillus versicolor. The fungus was later isolated from intact perlite in agar plates. A bacterial clone library was used to confirm the presence in the biofilm of a unique hydrocarbon-degrading bacterium closely related to Bacillus sp. Analysis of the petroleum components by gas chromatography showed that there n-alkanes, aromatic hydrocarbons, and carbazoles were degraded. [Int Microbiol 2006; 9(2):119-124
Evaluation of Alternative High-Throughput Sequencing Methodologies for the Monitoring of Marine Picoplanktonic Biodiversity Based on rRNA Gene Amplicons
16 pages, 6 figures, 2 tablesSequencing of rRNA gene polymerase chain reaction amplicons (rRNA tags) is the most common approach for investigating microbial diversity. The recent development of high-throughput sequencing (HTS) technologies has enabled the exploration of microbial biodiversity at an unprecedented scale, greatly expanding our knowledge on the microbiomes of marine ecosystems. These approaches provide accurate, fast, and cost efficient observations of the marine communities, and thus, may be suitable tools in biodiversity monitoring programs. To reach this goal, consistent and comparable methodologies must be used over time and within sites. Here, we have performed a cross-platform study of the two most common HTS methodologies, i.e., 454-pyrosequencing and Illumina tags to evaluate their usefulness in biodiversity monitoring and assessment of environmental status. Picoplankton biodiversity has been compared through both methodologies by sequencing the 16 and 18 S rRNA genes of a set of samples collected in the coast of Barcelona (NW Mediterranean). The results show that, despite differences observed in the rare OTUs retrieved, both platforms provide a comparable view of the marine picoplankton communities. On a taxonomic level, there was an accurate overlap in the detected phyla between the two methods and the overall estimates of alpha- and betadiversity were comparable. In addition, we explored the concept of “indicator species” and found that certain taxa (i.e., members of the Gammaproteobacteria among others) as well as the ratio between some phylogenetic groups (i.e., the ratio of Alphaproteobacteria/Gammaproteobacteria, Alteromonas/SAR11, and Alteromonas + Oceanospirillales/SAR11) have potential for being useful indicators of environmental status. The data show that implementing new protocols and identifying indicators of environmental status based on rRNA amplicon sequencing is feasible, and that is worth exploring whether the identified indices are universally applicableThis manuscript is a result of DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing GEnS) project, funded by the European Union (grant agreement no. 308392), and a MINECO Grant GRADIENTS Fine-scale structure of cross-shore GRADIENTS along the Mediterranean coast (CTM2012-39476-C02)Peer Reviewe
Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: Effect of water
The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar–agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2 + N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes.The authors acknowledge the financial support provided by the National Research Program under the project CTM2011–22921 and the Program FEDER of the Principado de Asturias 2007–2013 under the Project PC10-40.Peer reviewe
Prevalence of potentially thermophilic microorganisms in biofilms from greenhouse-enclosed drip irrigation systems
Drip irrigation systems using reclaimed water often present clogging events of biological origin. Microbial communities in biofilms from microirrigation systems of an experimental greenhouse in Almería, SE Spain, which used two different qualities of water (treated wastewater and reclaimed water), were analyzed by denaturing gradient gel electrophoresis and subsequent sequencing of amplified 16S rRNA gene bands. The most remarkable feature of all biofilms was that regardless of water origin, sequences belonging to Firmicutes were prevalent (53.5 % of total mean band intensity) and that almost all sequences recovered had some similarity (between 80.2 and 97 %) to thermophilic microorganisms. Mainly, sequences were closely related to potentially spore-forming organisms, suggesting that microbial communities able to grow at high temperatures were selected from the microbiota present in the incoming water. These pioneer results may contribute to improve management strategies to minimize the problems associated to biofouling in irrigation systems
Long-term patterns of an interconnected core marine microbiota
Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth’s primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the lack of consensus on how to identify them. So far, most core microbiotas have been defined based on species occurrence and abundance. Yet, species interactions are also important to identify core microbes, as communities include interacting species. Here, we investigate interconnected bacteria and small protists of the core pelagic microbiota populating a long-term marine-coastal observatory in the Mediterranean Sea over a decade.Versión del edito
- …
