6 research outputs found

    IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice

    Get PDF
    Inflammation plays a central pathogenic role in the pernicious metabolic and end-organ sequelae of obesity. Among these sequelae, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the developed world. The twinned observations that obesity is associated with increased activation of the interleukin (IL)-17 axis and that this axis can regulate liver damage in diverse contexts prompted us to address the role of IL-17RA signaling in the progression of NAFLD. We further examined whether microbe-driven IL-17A regulated NAFLD development and progression. We show here that IL-17RA−/− mice respond to high-fat diet stress with significantly greater weight gain, visceral adiposity, and hepatic steatosis than wild-type controls. However, obesity-driven lipid accumulation was uncoupled from its end-organ consequences in IL-17RA−/− mice, which exhibited decreased steatohepatitis, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase enzyme expression, and hepatocellular damage. Neutralization of IL-17A significantly reduced obesity-driven hepatocellular damage in wild-type mice. Further, colonization of mice with segmented filamentous bacteria (SFB), a commensal that induces IL-17A production, exacerbated obesity-induced hepatocellular damage. In contrast, SFB depletion protected from obesity-induced hepatocellular damage. Conclusion: These data indicate that obesity-driven activation of the IL-17 axis is central to the development and progression of NAFLD to steatohepatitis and identify the IL-17 pathway as a novel therapeutic target in this condition. (Hepatology 2014;59:1830–1839

    Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice

    Get PDF
    Alterations in the gut microbiota have been proposed to modify the development and maintenance of obesity and its sequelae. Definition of underlying mechanisms has lagged, although the ability of commensal gut microbes to drive pathways involved in inflammation and metabolism has generated compelling, testable hypotheses. We studied C57BL/6 mice from two vendors that differ in their obesogenic response and in their colonization by specific members of the gut microbiota having well-described roles in regulating gut immune responses. We confirmed the presence of robust differences in weight gain in mice from these different vendors during high fat diet stress. However, neither specific, highly divergent members of the gut microbiota (Lactobacillus murinus, segmented filamentous bacteria) nor the horizontally transmissible gut microbiota were found to be responsible. Constitutive differences in locomotor activity were observed, however. These data underscore the importance of selecting appropriate controls in this widely used model of human obesity

    Lupus risk variants in the PXK locus alter B-cell receptor internalization

    Get PDF
    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10-10, OR 0.81 (0.75 - 0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity

    Identification of ATPAF1 as a novel candidate gene for asthma in children

    No full text
    Background:Asthma is a common disease of children with a complex genetic origin. Understanding the genetic basis of asthma susceptibility will allow disease prediction and risk stratification. Objective:We sought to identify asthma susceptibility genes in children. Methods:A nested case-control genetic association study of children of Caucasian European ancestry from a birth cohort was conducted. Single nucleotide polymorphisms (SNPs, n = 116,024) were genotyped in pools of DNA samples from cohort children with physician-diagnosed asthma (n = 112) and normal controls (n = 165). A genomic region containing the ATPAF1 gene was found to be significantly associated with asthma. Additional SNPs within this region were genotyped in individual samples from the same children and in 8 independent study populations of Caucasian, African American, Hispanic, or other ancestries. SNPs were also genotyped or imputed in 2 consortia control populations. ATPAF1 expression was measured in bronchial biopsies from asthmatic patients and controls. RESULTS: Asthma was found to be associated with a cluster of SNPs and SNP haplotypes containing the ATPAF1 gene, with 2 SNPs achieving significance at a genome-wide level (P = 2.26 × 10(-5) to 2.2 × 10(-8)). Asthma severity was also found to be associated with SNPs and SNP haplotypes in the primary population. SNP and/or gene-level associations were confirmed in the 4 non-Hispanic populations. Haplotype associations were also confirmed in the non-Hispanic populations (P = .045-.0009). ATPAF1 total RNA expression was significantly (P < .01) higher in bronchial biopsies from asthmatic patients than from controls. Conclusion:Genetic variation in the ATPAF1 gene predisposes children of different ancestries to asthma

    Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription

    Get PDF
    Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses
    corecore