180 research outputs found

    Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applications

    Get PDF
    This paper details the preliminary findings of a study to achieve a durable thin film CdTe photovoltaic device structure onto ultra-thin space qualified cover glass. An aluminium doped zinc oxide (AZO) transparent conducting oxide (TCO) was deposited directly onto cover glass using metal organic chemical vapour deposition (MOCVD). The AZO demonstrated a low sheet resistance of 10 Ω/□ and high optical transparency of 85% as well as an excellent adherence and environmental stability. Preliminary deposition of the photovoltaic layers onto the AZO on cover glass, by MOCVD, showed the possibility of such a structure yielding a device conversion efficiency of 7.2 %. High series resistance (10 Ω.cm2) and low Voc (586 mV) were identified as the limiting factors when compared to the authors platform process on indium tin oxide (ITO) coated aluminosilicate. The coverage of the Cd1-xZnxS window layer along with the front contacting of the device was shown to be the major cause of the low efficiency. Further deposition of the AZO/CdTe employing an oxygen plasma cleaning step to the cover glass and evaporated gold front contacts significantly improved the device performance. A best conversion efficiency of 10.2 % with series resistance improved to 4.4 Ω.cm2 and open circuit voltage (Voc) up to 667 mV and good adhesion has demonstrated for the first time direct deposition of CdTe solar cells onto 100 μm thick space qualified cover glass

    Impact of tillage system, preceding crops, and P fertilizer on economic performance of flax production

    Get PDF
    Non-Peer ReviewedConservation farming is a system approach that considers all factors that affect production. Reduced tillage is one of the methods of conservation farming and is becoming increasingly popular on the prairie. This will impact directly on nutrient availability and on fertilizer and other chemical management decisions. Phosphorus (P) supply, and its availability in early stages of plant growth, is critical to the determination of optimum crop yield. Producers frequently avoid P application in flax and increase the P supply in the preceding crops since flax is very sensitive to seed-placed applications of monoammonium phosphate. Along with supplying residual P, a preceding crop such as wheat and canola may also have different impacts on yield and performance of flax depending upon its association with mycorrhizae. Since flax is a highly mycorrhizal crop, it is possible that mycorrhizal associations could be responsible for part of the positive response that flax shows in zero-till systems and the limited P response observed in recent studies. If so then P fertility requirements in flax could be greatly affected by the tillage system and by whether the preceding crop was mycorrhizal or not. Phosphorus fertilization could possibly be reduced or eliminated in flax grown in zero-till following a mycorrhizal crop and optimized in flax grown under conventional tillage management. By more clearly defining the P requirements of flax, canola and wheat grown under different management systems, it is possible to reduce inputs while maintaining or improving crop yield and quality. While many research studies have evaluated the economic impact of tillage systems on N fertility requirements, there has been very limited information available on the economic impact of tillage management and P phytoavailability or on the impact of the tillage system and past phosphorus fertilizer management on phosphorus response of crops. The objective of this study is to evaluate the economic impact of flax on tillage system, P fertilizer application, preceding crop, and level of P fertilizer applied in preceding crop

    CdCl2 treatment related diffusion phenomena in Cd1xZnxS/CdTe solar cells

    Get PDF
    Utilisation of wide bandgap Cd1_xZnxS alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd1_xZnxS through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl2 activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd1_xZnxS/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl2 activated), annealed only (without CdCl2 activation), and a control (without CdCl2 activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl2 treatment. As a result, the initial Cd1_xZnxS/CdS bilayer structure was observed to unify into a single Cd1_xZnxS layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd1_xZnxS/CdTe device

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells

    Get PDF
    During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling

    Effect of bending test on the performance of CdTe solar cells on flexible ultra-thin glass produced by MOCVD

    Get PDF
    The development of lightweight and flexible solar modules is highly desirable for high specific power applications, building integrated photovoltaics, unmanned aerial vehicles and space. Flexible metallic and polyimide foils are frequently used, but in this work an alternative substrate with attractive properties, ultra-thin glass (UTG) has been employed. CdTe solar cells with average efficiency reaching 14.7% AM1.5G efficiency have been produced on UTG of 100 ÎĽm thickness. Little has been reported on the effects on PV performance when flexed, so we investigated the effects on J-V parameters when the measurements were performed in 40 mm and 32 mm bend radius, and in a planar state before and after the bend curvature was applied. The flat J-V measurements after 32 mm bending test showed some improvement in efficiency, Voc and FF, with values higher than the first measurement in a planar state. In addition, two CdTe solar cells with identical initial performance were subjected to 32 mm static bending test for 168 hours, the results showed excellent uniformity and stability and no significant variation on J-V parameters was observed. External quantum efficiency and capacitance voltage measurements were performed and showed no significant change in spectral response or carrier concentration. Residual stress analysis showed that no additional strain was induced within the film after the bending test and that the overall strain was low. This has demonstrated the feasibility of using CdTe solar cells on UTG in new applications, when a curved module is required without compromising performance

    The effect of multiple deformations on the formation of ultrafine grained steels

    Full text link
    A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (&epsilon; C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on &epsilon; C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced &epsilon; C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.<br /

    Effects of Cd1-xZnxS alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD

    Get PDF
    Ultra-thin CdTe:As/Cd1-xZnxS photovoltaic solar cells with an absorber thickness of 0.5 ÎĽm were deposited by metal-organic chemical vapour deposition on indium tin oxide coated boro-aluminosilicate substrates. The Zn precursor concentration was varied to compensate for Zn leaching effects after CdCl2 activation treatment. Analysis of the solar cell composition and structure by X-ray photoelectron spectroscopy depth profiling and X-ray diffraction showed that higher concentrations of Zn in the Cd1-xZnxS window layer resulted in suppression of S diffusion across the CdTe/Cd1-xZnxS interface after CdCl2 activation treatment. Excessive Zn content in the Cd1-xZnxS alloy preserved the spectral response in the blue region of the solar spectrum, but increased series resistance for the solar cells. A modest increase in the Zn content of the Cd1-xZnxS alloy together with a post-deposition air anneal resulted in an improved blue response and an enhanced open circuit voltage and fill factor. This device yielded a mean efficiency of 8.3% over 8 cells (0.25 cm2 cell area) and best cell efficiency of 8.8%

    Regions of the genome that affect agronomic performance in two-row barley

    Get PDF
    Quantitative trait locus (QTL) main effects and QTL by environment (QTL Ă— E) interactions for seven agronomic traits (grain yield, days to heading, days to maturity, plant height, lodging severity, kernel weight, and test weight) were investigated in a two-row barley (Hordeum vulgare L.) cross, Harrington/TR306. A 127-point base map was constructed from markers (mostly RFLP) scored in 146 random double-haploid (DH) lines from the Harrington/TR306 cross. Field experiments involving the two parents and 145 random DH lines were grown in 1992 and/or 1993 at 17 locations in North America. Analysis of QTL was based on simple and composite interval mapping. Primary QTL were declared at positions where both methods gave evidence for QTL. The number of primary QTL ranged from three to six per trait, collectively explaining 34 to 52% of the genetic variance. None of these primary QTL showed major effects, but many showed effects that were consistent across environments. The addition of secondary QTL gave models that explained 39 to 80% of the genetic variance. The QTL were dispersed throughout the barley genome and some were detected in regions where QTL have been found in previous studies. Eight chromosome regions contained pleiotropic loci and/or linked clusters of loci that affected multiple traits. One region on chromosome 7 affected all traits except days to heading. This study was an intensive effort to evaluate QTL in a narrow-base population grown in a large set of environments. The results reveal the types and distributions of QTL effects manipulated by plant breeders and provide opportunities for future testing of marker-assisted selection
    • …
    corecore