24 research outputs found

    The extended Farlie-Gumbel-Morgenstern bivariate Lindley distribution: Concomitants of order statistics and estimation

    Get PDF
    The ranked set sampling (RSS) is a new sampling method alternative tothe simple random sampling (SRS). In this work, we develop the theory ofconcomitant of order statistics (COS) ascending from the extended Farlie-Gumbel-Morgenstern bivariate Lindley distribution (EFGMBLD). Also, wehave discussed the problem of estimating the parameters related with thedistribution of the variable interest, Y , based on the RSS dened by orderingthe marginal observations on an auxiliary variable X, provided that (X; Y )follows an EFGMBLD. When the association parameters corresponding to Yare known, we have derived two estimators, viz., an unbiased estimator basedon Stoke's RSS and the best linear unbiased estimator (BLUE) based on theStoke's RSS. The BLUE and the unbiased estimators are also compared basedon simulation study

    Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sintering

    No full text
    YesAlumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa

    Observation of Resonance Structures in e+e- →π+π-ψ2 (3823) and Mass Measurement of ψ2 (3823)

    No full text
    © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.Using a data sample corresponding to an integrated luminosity of 11.3 fb-1 collected at center-of-mass energies from 4.23 to 4.70 GeV with the BESIII detector, we measure the product of the e+e-→π+π-ψ2(3823) cross section and the branching fraction B[ψ2(3823)→γχc1]. For the first time, resonance structure is observed in the cross section line shape of e+e-→π+π-ψ2(3823) with significances exceeding 5σ. A fit to data with two coherent Breit-Wigner resonances modeling the s-dependent cross section yields M(R1)=4406.9±17.2±4.5 MeV/c2, Γ(R1)=128.1±37.2±2.3 MeV, and M(R2)=4647.9±8.6±0.8 MeV/c2, Γ(R2)=33.1±18.6±4.1 MeV. Though weakly disfavored by the data, a single resonance with M(R)=4417.5±26.2±3.5 MeV/c2, Γ(R)=245±48±13 MeV is also possible to interpret data. This observation deepens our understanding of the nature of the vector charmoniumlike states. The mass of the ψ2(3823) state is measured as (3823.12±0.43±0.13) MeV/c2, which is the most precise measurement to date

    Measurement of proton electromagnetic form factors in the time-like region using initial state radiation at BESIII

    No full text
    The electromagnetic process is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/ using the invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution
    corecore