41 research outputs found
Three Essential Ribonucleases—RNase Y, J1, and III—Control the Abundance of a Majority of Bacillus subtilis mRNAs
Bacillus subtilis possesses three essential enzymes thought to be involved in mRNA decay to varying degrees, namely RNase Y, RNase J1, and RNase III. Using recently developed high-resolution tiling arrays, we examined the effect of depletion of each of these enzymes on RNA abundance over the whole genome. The data are consistent with a model in which the degradation of a significant number of transcripts is dependent on endonucleolytic cleavage by RNase Y, followed by degradation of the downstream fragment by the 5′–3′ exoribonuclease RNase J1. However, many full-size transcripts also accumulate under conditions of RNase J1 insufficiency, compatible with a model whereby RNase J1 degrades transcripts either directly from the 5′ end or very close to it. Although the abundance of a large number of transcripts was altered by depletion of RNase III, this appears to result primarily from indirect transcriptional effects. Lastly, RNase depletion led to the stabilization of many low-abundance potential regulatory RNAs, both in intergenic regions and in the antisense orientation to known transcripts
nocoRNAc: Characterization of non-coding RNAs in prokaryotes
<p>Abstract</p> <p>Background</p> <p>The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.</p> <p>Results</p> <p>We present <smcaps>NOCO</smcaps>RNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. <smcaps>NOCO</smcaps>RNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and <smcaps>NOCO</smcaps>RNAc to the genome of <it>Streptomyces coelicolor </it>and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.</p> <p>Conclusions</p> <p>We have developed <smcaps>NOCO</smcaps>RNAc, a framework that facilitates the automated characterization of functional ncRNAs. <smcaps>NOCO</smcaps>RNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. <smcaps>NOCO</smcaps>RNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at <url>http://www.zbit.uni-tuebingen.de/pas/nocornac.htm</url>.</p
Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli
<p>Abstract</p> <p>Background</p> <p>In <it>Escherichia coli</it>, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of <it>E. coli </it>with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length.</p> <p>Results</p> <p>We discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three <it>cis</it>-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains.</p> <p>Conclusions</p> <p>This comprehensive screen for <it>E. coli </it>sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the <it>E. coli </it>genome. We constructed the <it>Escherichia coli </it>Small RNA Browser (ECSBrowser; <url>http://rna.iab.keio.ac.jp/</url>), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.</p
Nucleic Acids Res.
Post-transcriptional regulatory mechanisms are widespread in bacteria. Interestingly, current published data hint that some of these mechanisms may be non-random with respect to their phylogenetic distribution. Although small, trans-acting regulatory RNAs commonly occur in bacterial genomes, they have been better characterized in Gram-negative bacteria, leaving the impression that they may be less important for Firmicutes. It has been presumed that Gram-positive bacteria, in particular the Firmicutes, are likely to utilize cis-acting regulatory RNAs located within the 5' mRNA leader region more often than trans-acting regulatory RNAs. In this analysis we catalog, by a deep sequencing-based approach, both classes of regulatory RNA candidates for Bacillus subtilis, the model microorganism for Firmicutes. We successfully recover most of the known small RNA regulators while also identifying a greater number of new candidate RNAs. We anticipate these data to be a broadly useful resource for analysis of post-transcriptional regulatory strategies in B. subtilis and other Firmicutes
Novelty detection based on sentence level patterns
The detection of new information in a document stream is an important component of many potential applications. In this paper, a new novelty detection approach based on the identification of sentence level patterns is proposed. Given a user's information need, some patterns in sentences such as combinations of query words, named entities and phrases, may contain more important and relevant information than single words. Therefore, the proposed novelty detection approach focuses on the identification of previously unseen query-related patterns in sentences. Specifically, a query is preprocessed and represented with patterns that include both query words and required answer types. These patterns are used to retrieve sentences, which are then determined to be novel if it is likely that a new answer is present. An analysis of patterns in sentences was performed with data from the TREC 2002 novelty track and experiments on novelty detection were carried out on data from the TREC 2003 and 2004 novelty tracks. The experimental results show that the proposed pattern-based approach significantly outperforms all three baselines in terms of precision at top ranks