5 research outputs found

    Development of methods for determining the coordinates of firing positions of roving mortars by a network of counter-battery radars

    Get PDF
    The mathematical formulation of the problem of determining the coordinates of targets in the network of counter-battery radars is formulated. It has been established that the problem of estimating the coordinates of targets in the network of counter-battery radars for an excessive number of estimates of primary coordinates should be considered as a statistical problem. The method for determining the coordinates of the firing positions of roving mortars has been improved, in which, in contrast to the known ones, the coordinates of targets on the flight trajectory are coordinated with space and time and the information is processed by a network of counter-battery radars. The developed simulation mathematical model for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars. Simulation modeling of the method for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars has been carried out. It has been established that the use of a network of radars makes it possible to increase the accuracy of determining the coordinates of the firing means on average from 23 % to 71 %, depending on the number of counter-battery radars in the network. It has also been found that the appropriate number of counter-battery warfare radars in the network is three or four. A further increase in the number of counter-battery warfare radars in the network does not lead to a significant increase in the accuracy of determining the coordinates of artillery and mortar firing positions. In carrying out further research, it is necessary to develop a method for the spatial separation of elements of a group of targets and interfering objects by a network of counter-battery warfare radar

    Development of a rangefinding method for determining the coordinates of targets by a network of radar stations in counter-battery warfare

    Get PDF
    The increase in the accuracy of determining the coordinates of targets is explained by the use of a network of counter-battery radar stations and the rangefinding method for determining the coordinates of targets. The main advantage of using the rangefinding method for determining the coordinates of targets in a network of counter-battery radar stations is to ensure the required accuracy in determining the coordinates of targets without using accurate measurement of angular coordinates. The minimum geometry of the system, which ensures the use of the rangefinding method for determining coordinates, is given. The method of determining the coordinates of targets by a network of counter-battery radar stations has been improved. In contrast to the known ones, information about the range to the target is additionally used in a spatially distributed network of radar stations for counter-battery combat. The boundaries of the working zones of the network of two and three counter-battery radar stations are calculated. The features of creating a continuous strip using the rangefinding method for determining the coordinates of the target are considered. Statistical modeling of the rangefinding method for determining the plane coordinates of the target has been carried out. It has been established that the use of the rangefinding method ensures the determination of the planar coordinates of the target in a sector of at least 120°. The targets are at a distance of direct radio visibility in relation to the counter-battery radar. The root-mean-square error in determining the target range in this case is no more than 50 m. It has been established that the creation of continuous bands of a low-altitude radar field at a certain height is possible by arranging radar stations in a line. In this case, the distance between the counter-battery radar stations should be no more than half the target detection range at this heigh

    Multi-level community interventions for primary stroke prevention: A conceptual approach by the World Stroke Organization

    Get PDF
    The increasing burden of stroke and dementia emphasizes the need for new, well-tolerated and cost-effective primary prevention strategies that can reduce the risks of stroke and dementia worldwide, and specifically in low- and middle-income countries (LMICs). This paper outlines conceptual frameworks of three primary stroke prevention strategies: (a) the “polypill” strategy; (b) a “population-wide” strategy; and (c) a “motivational population-wide” strategy. (a) A polypill containing generic low-dose ingredients of blood pressure and lipid-lowering medications (e.g. candesartan 16 mg, amlodipine 2.5 mg, and rosuvastatin 10 mg) seems a safe and cost-effective approach for primary prevention of stroke and dementia. (b) A population-wide strategy reducing cardiovascular risk factors in the whole population, regardless of the level of risk is the most effective primary prevention strategy. A motivational population-wide strategy for the modification of health behaviors (e.g. smoking, diet, physical activity) should be based on the principles of cognitive behavioral therapy. Mobile technologies, such as smartphones, offer an ideal interface for behavioral interventions (e.g. Stroke Riskometer app) even in LMICs. (c) Community health workers can improve the maintenance of lifestyle changes as well as the adherence to medication, especially in resource poor areas. An adequate training of community health workers is a key point

    Construction of Methods for Determining the Contours of Objects on Tonal Aerospace Images Based on the Ant Algorithms

    Full text link
    A method has been proposed for determining contours of objects on tonal aerospace images based on ant algorithms. The method, in contrast to those already known, takes into consideration patterns in the image formation; the ant algorithm is used for determining the contours. Determining an object's contours in the image has been reduced to calculating the fitness function, the totality of agents' motion areas, and the pheromone concentration along agents' motion routes.We have processed a tonal image for determining the contours of objects using a method based on the ant algorithm. In order to reduce the number of "junk" objects, the main principles and stages of the method for multi-scale processing of aerospace images based on the ant algorithm have been outlined. Determining the contours on images with a different value of the scale factor is carried out applying a method based on the ant algorithm. In addition, we rescale images with a different scale factor value to the original size and calculate the image filter. The resulting image is a pixelwise product of the original image and the image filter.The multiscale processing of tonal aerospace images with different scale values has been performed using methods based on the ant algorithms. It was established that application of a multi-scale processing reduces the number of "junk" objects. At the same time, due to multi-scale processing, not the objects' contours are determined but the objects in full.We estimated errors of first and second kind in determining the contours of objects on tonal aerospace images based on the ant algorithms. It was established that using the constructed methods has made it possible to reduce the first and second kind errors in determining the contours on tonal aerospace images by the magnitude of 18–22 % on averag

    Development of Methods for Determining the Coordinates of Firing Positions of Roving Mortars by A Network of Counter-battery Radars

    Full text link
    The mathematical formulation of the problem of determining the coordinates of targets in the network of counter-battery radars is formulated. It has been established that the problem of estimating the coordinates of targets in the network of counter-battery radars for an excessive number of estimates of primary coordinates should be considered as a statistical problem. The method for determining the coordinates of the firing positions of roving mortars has been improved, in which, in contrast to the known ones, the coordinates of targets on the flight trajectory are coordinated with space and time and the information is processed by a network of counter-battery radars. The developed simulation mathematical model for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars. Simulation modeling of the method for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars has been carried out. It has been established that the use of a network of radars makes it possible to increase the accuracy of determining the coordinates of the firing means on average from 23 % to 71 %, depending on the number of counter-battery radars in the network. It has also been found that the appropriate number of counter-battery warfare radars in the network is three or four. A further increase in the number of counter-battery warfare radars in the network does not lead to a significant increase in the accuracy of determining the coordinates of artillery and mortar firing positions. In carrying out further research, it is necessary to develop a method for the spatial separation of elements of a group of targets and interfering objects by a network of counter-battery warfare radar
    corecore