752 research outputs found

    Generalized rotating-wave approximation for arbitrarily large coupling

    Full text link
    A generalized version of the rotating-wave approximation for the single-mode spin-boson Hamiltonian is presented. It is shown that performing a simple change of basis prior to eliminating the off-resonant terms results in a significantly more accurate expression for the energy levels of the system. The generalized approximation works for all values of the coupling strength and for a wide range of detuning values, and may find applications in solid-state experiments.Comment: 4 pages, 2 figs, REVTeX

    Oscillator tunneling dynamics in the Rabi model

    Get PDF
    The familiar Rabi model, comprising a two-level system coupled to a quantum harmonic oscillator, continues to produce rich and surprising physics when the coupling strength becomes comparable to the individual subsystem frequencies. We construct approximate solutions for the regime in which the oscillator frequency is small compared to that of the two-level system and the coupling strength matches or exceeds the oscillator frequency. Relating our fully quantum calculation to a previous semi-classical approximation, we find that the dynamics of the oscillator can be considered to a good approximation as that of a particle tunneling in a classical double-well potential, despite the fundamentally entangled nature of the joint system. We assess the prospects for observation of oscillator tunneling in the context of nano- or micro-mechanical experiments and find that it should be possible if suitably high coupling strengths can be engineered.Comment: 25 pages, 5 figures, preprint forma

    Polaritonic characteristics of insulator and superfluid phases in a coupled-cavity array

    Full text link
    Recent studies of quantum phase transitions in coupled atom-cavity arrays have focused on the similarities between such systems and the Bose-Hubbard model. However, the bipartite nature of the atom-cavity systems that make up the array introduces some differences. In order to examine the unique features of the coupled-cavity system, the behavior of a simple two-site model is studied over a wide range of parameters. Four regions are identified, in which the ground state of the system may be classified as either a polaritonic insulator, a photonic superfluid, an atomic insulator, or a polaritonic superfluid.Comment: 7 pages, 9 figures, 1 table, REVTeX 4; published versio

    Ground-State Entanglement in a Coupled-Cavity Model

    Full text link
    Bipartite entanglement entropies are calculated for the ground state of the two-excitation subspace in a two-site coupled cavity model. Each region in the phase diagram (atomic insulator, polaritonic insulator, photonic superfluid, and polaritonic superfluid) is found to be characterized by unique entanglement properties. In particular, the polaritonic superfluid region exhibits multipartite entanglement among the two atoms and two cavity fields. This system provides a toy model in which a number of intriguing aspects of entanglement can be studied, such as the relationship of entanglement to phase transitions, entanglement of particles with different dimensionality, and the connection between experimentally accessible local observables and entanglement entropies.Comment: 5 pages, 4 figure

    Dynamics in a coupled-cavity array

    Full text link
    The dynamics of a system composed of two coupled optical cavities, each containing a single two-level atom, is studied over a wide range of detuning and coupling values. A description of the field in terms of delocalized modes reveals that the detuning between the atoms and these modes is controlled by the coupling between the cavities; this detuning in turn governs the nature of the dynamics. If the atoms are highly detuned from both delocalized field modes, the dynamics becomes dispersive and an excitation may be transferred from the first atom to the second without populating the field. In the case of resonance between the atoms and one of the delocalized modes, state transfer between the atoms requires intermediate excitation of the field. Thus the interaction between the two atoms can be controlled by adjusting the coupling between the cavities.Comment: 11 pages, 3 figure

    Coherent exciton dynamics in a dissipative environment maintained by an off-resonant vibrational mode

    Get PDF
    This work was supported by the Leverhulme Trust (RPG-080) and the EPSRC (EP/G03673X/1).The interplay between an open quantum system and its environment can lead to both coherent and incoherent behavior. We explore the extent to which strong coupling to a single bosonic mode can alter the coherence properties of a two-level system in a structured environment. This mode is treated exactly, with the rest of the environment comprising a Markovian bath of bosonic modes. The strength of the coupling between the two-level system and the single mode is varied for a variety of forms for the bath spectral density in order to assess whether the coherent dynamics of the two-level system are modified. We find a clear renormalization of the site population oscillation frequency that causes an altered interaction with the bath. This leads to enhanced or reduced coherent behavior of the two-level system, depending on the form of the spectral density function. We present an intuitive interpretation, based on an analytical model, to explain the behavior.Publisher PDFPeer reviewe

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    Defining the semiclassical limit of the quantum Rabi Hamiltonian

    Full text link
    The crossover from quantum to semiclassical behavior in the seminal Rabi model of light-matter interaction still, surprisingly, lacks a complete and rigorous understanding. A formalism for deriving the semiclassical model directly from the quantum Hamiltonian is developed here. Working in a displaced Fock-state basis ∣α,n⟩\lvert \alpha, n \rangle, the semiclassical limit is obtained by taking ∣α∣→∞\lvert \alpha \rvert \to \infty and the coupling to zero. This resolves the discrepancy between coherent-state dynamics and semiclassical Rabi oscillations in both standard and ultrastrong coupling/driving regimes. Furthermore, it provides a framework for studying the quantum-to-classical transition, with potential applications in quantum technologies.Comment: 6 pages, 1 figure; 6 pages Supplementary Materia

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
    • …
    corecore