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Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connec-
tions to quantum optics. Several of these experiments address the prototypical problem of cavity quantum
electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the
exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous
rotating-wave approximation �RWA�, necessitating other theoretical approaches. One such approach is an
adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic fre-
quency of the two-level system. A derivation of the approximation is presented, together with a discussion of
its applicability in a system consisting of a Cooper-pair box coupled to a nanomechanical resonator. Within this
approximation the time evolution of the two-level-system occupation probability is calculated using both
thermal- and coherent-state initial conditions for the oscillator, focusing particularly on collapse and revival
phenomena. For thermal-state initial conditions parameter regimes are found in which collapse and revival
regions may be clearly distinguished, unlike the erratic evolution of the thermal-state RWA model. Coherent-
state initial conditions lead to complex behavior, which exhibits sensitive dependence on the coupling strength
and the initial amplitude of the oscillator state. One feature of the regime considered here is that closed-form
evaluation of the time evolution may be carried out in the weak-coupling limit, which provides insight into the
differences between the thermal- and coherent-state models. Finally, potential experimental observations in
solid-state systems, particularly the Cooper-pair box—nanomechanical resonator system, are discussed and
found to be promising.
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I. INTRODUCTION

One of the simplest fully quantum-mechanical systems
consists of a harmonic oscillator coupled to a two-level
�spinlike� system. Introduced in 1963 by Jaynes and
Cummings,1 this model has yet to be completely solved de-
spite its apparent simplicity. The approach taken by the origi-
nal authors, known as the rotating-wave approximation
�RWA�, relies upon the assumptions of near resonance and
weak coupling between the two systems. The RWA is widely
used because it is readily solvable and describes quite accu-
rately the standard physical realization of such a system: an
atom coupled to a field mode of an electromagnetic cavity. In
this experimental situation, the coupling strength between
the atom and field is largely determined by the intrinsic di-
pole moment of the atom; for all experiments to date, the
coupling strength � is very small compared to the atomic
transition frequency � �� /��10−7–10−6�.2,3 The near-
resonance condition is necessary to ensure the validity of the
two-level description of the atom. Thus the RWA is a natural,
and excellent, approximation in such a system.

Quantum-limited solid-state devices offer an alternative to
the traditional atom-cavity implementation of the spin-
oscillator system. Recent experiments have shown clear
spectroscopic evidence that a Cooper-pair box �CPB�, or Jo-
sephson charge qubit, coupled to a superconducting trans-
mission line behaves much like an atom in a cavity. The
dipole coupling between the two systems is � /��10−3, 3–4

orders of magnitude larger than that achieved in atomic
systems.4,5 Capacitive or inductive couplings offer the possi-
bility of still larger coupling strengths than those possible
with dipole coupling, even at large detunings between the
fundamental frequencies of the oscillator and the two-level
system. Some results from a flux-based, inductively coupled
system give preliminary evidence for coupled quantum be-
havior and entanglement between the two-level system and
the oscillator.6 Another intriguing possibility involves capaci-
tively coupling a CPB �Refs. 7–9� or a Josephson phase
qubit10 to a nanomechanical resonator �NR�. All of these
systems are capable of accessing coupling strengths and de-
tunings outside the regime in which the RWA is valid, requir-
ing different theoretical approaches to the problem. For ex-
ample, Ref. 10 details a perturbative treatment which is valid
for moderately strong coupling �� /��0.3� at zero detuning.

In this paper we discuss an approximation which is able to
treat strong coupling and large detuning. It is valid when the
splitting frequency of the two-level system is much smaller
than the frequency of the oscillator and holds well even for
coupling strengths up to or larger than the oscillator fre-
quency. The approximation is used to examine the time evo-
lution of the two-level system when the harmonic oscillator
begins in a thermal state or a coherent state. Several effects
of the coupling to the oscillator are distinguished, including
enhanced apparent decoherence rates, frequency modifica-
tion, and collapse and revivals of Rabi oscillations. We focus
particularly on collapses and revivals in this model.
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In the next section we introduce the form of the Hamil-
tonian to be considered and derive the adiabatic approxima-
tion. In Sec. III we evaluate the approximate time evolution
of the two-level system coupled to, respectively, a Fock state,
a thermal state, and a coherent state of the oscillator and
classify the behavior in several parameter regimes. Section
IV contains a further approximation which allows evaluation
in closed form of the infinite sums encountered in the
thermal- and coherent-state models. The prospects for ex-
perimental observation of our predictions are analyzed in
Sec. V, and Sec. VI concludes the paper. The Appendix con-
tains a detailed derivation of the effective Hamiltonian for a
CPB-NR system.

II. ADIABATIC APPROXIMATION IN THE DISPLACED
OSCILLATOR BASIS

The Hamiltonian which forms the basis for the calcula-
tions and discussion in this paper is

H = 1
2���̂x + ���̂z�â† + â� + ��0â†â . �1�

The Hamiltonian typically considered in cavity quantum
electrodynamics1,11 �CQED� differs from Eq. �1� only by a
rotation about �̂y. Our notation is chosen based on the par-
ticular solid-state system which we have in mind, consisting
of a Cooper-pair box coupled to a nanomechanical resonator.
When the CPB is biased away from its degeneracy point and
driven by a classical field resonant with the qubit transition
frequency, an effective Hamiltonian for the coupled system
may be found which has exactly the form of Eq. �1� �see Sec.
V and the Appendix�.32 In this case the two-level system
undergoes Rabi oscillations due to the �classical� external
driving field which are then altered by the coupling to the
quantum oscillator, unlike the usual picture in which the two-
level system is driven by the quantum oscillator itself. Al-
though the Hamiltonian and therefore the results we obtain
are not restricted to the CPB-NR system, for concreteness we
will use the language of that system throughout most of the
paper.

As no analytic solution to Eq. �1� is yet known, some
approximation is required. The most common approach is to
assume that the two-level system and the oscillator are close
to resonance, ��−�0��� ,�0, and that the coupling be-
tween them is weak, ��� ,�0. Then terms which do not
conserve energy may be discarded �the RWA�, resulting in
what is usually termed the Jaynes-Cummings model
�JCM�.1,11 As mentioned in the Introduction, this is an appro-
priate approximation for atom-cavity experiments; however,
unlike atom-cavity systems, the solid-state system we are
considering has the potential for strong coupling at large de-
tunings. In this paper we will treat the case in which the
two-level-system splitting frequency is much smaller than
the oscillator frequency, ���0, and the coupling strength is
allowed to be large, on the order of or greater than the oscil-
lator frequency. The RWA is not appropriate in this limit.

An excellent way to treat this regime is via a type of
adiabatic approximation. This approximation has been de-
rived previously by several authors using different methods.
Graham and Höhnerbach refer to this regime as the “quaside-

generate limit” and give the same lowest-order expressions
as we derive.12–14 Schweber utilized the Bargmann Hilbert-
space representation,15 and Crisp solved recurrence
relations;16 both of these authors found higher-order correc-
tions beyond what we present. We take yet a different ap-
proach. First, by neglecting the self-energy of the two-level
system, we derive the basis in which the rest of the calcula-
tion will be performed, called the “displaced oscillator”16

basis. In this basis the Hamiltonian may be truncated to a
block-diagonal form and the blocks solved individually. Es-
sentially, the two-level-system self-energy is introduced only
as needed to lift the degeneracy within individual subspaces
in the displaced oscillator basis.

To begin with we consider eigenstates of the form �i ,	i�
= �i� � �	i� where �i= + ,−� denotes the eigenstates of �̂z and
�	i� are the corresponding oscillator eigenstates, found from
the last two terms of Eq. �1� with �̂z set to its eigenvalue of
±1 as appropriate:

�±���â† + â� + ��0â†â��	±� = E�	±� . �2�

Completing the square gives

	
â† ±
�

�0
�
â ±

�

�0
���	±� = 
 E

��0
+

�2

�0
2��	±� . �3�

Taking � /�0 to be real, the operator on the left-hand side
may be rewritten as

	
â† ±
�

�0
�
â ±

�

�0
�� = D̂�
�/�0�â†âD̂†�
�/�0� , �4�

where D̂���=exp���â†− â�� is a displacement operator.17 The
operator in Eq. �4� may be interpreted as the number operator
for a harmonic oscillator of frequency �0, effective mass m,
and equilibrium position 
�2� /�0��xZP where �xZP

=� / �2m�0�. The eigenstates of this operator are displaced
Fock �number� states,

�	±� = e
��/�0��â†−â��N� � �N±�, N = 0,1,2, . . . , �5�

with energies given by

EN = ��0
N −
�2

�0
2� . �6�

These approximate eigenstates and energies constitute the
displaced oscillator basis, which will be used throughout
subsequent calculations. An illustration of the displaced-well
potentials and the corresponding energy levels is given in
Fig. 1.

This basis has a simple interpretation in the CPB-NR sys-
tem. Due to the capacitive coupling, one charge state of the
CPB will attract the NR and shift its equilibrium position
closer to the CPB, while the oppposite charge state will repel
the NR. As long as the stretching of the beam due to the
attraction is small, the NR will remain approximately linear
and may still be described as a harmonic oscillator. However,
the position of the harmonic potential well will have shifted.
This is precisely the situation described mathematically by
the displaced oscillator basis, which allows the use of the
ordinary harmonic oscillator formalism within each dis-
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placed potential well. The correspondence of physical posi-
tion displacement to the formal displacement operator makes
this a natural basis to work in.

However, there are some peculiarities associated with us-
ing the displaced oscillator states as a basis. Although the
states �+ ,N+� ��−,N−�� form an orthonormal basis with
�M+ �N+�=MN ��M− �N−�=MN�, the states �N+� and �N−� are
not mutually orthogonal. This may be understood easily in
position space, where the displacement operator corresponds
to a displacement in x. Consider, for example, the harmonic
oscillator ground state �0�, which has a Gaussian form: this
state displaced by a finite amount is never completely or-
thogonal to the same state displaced by the opposite amount,
although the displaced states may become very nearly or-
thogonal if the displacement is large enough. The overlap
between Fock states displaced in different directions is given
by

�M−�N+� =�e−2�2/�0
2
�− 2�/�0�M−NN!/M!LN

M−N��2�/�0�2� , M � N ,

e−2�2/�0
2
�2�/�0�N−MM!/N!LM

N−M��2�/�0�2� , M � N ,
� �7�

where Li
j is an associated Laguerre polynomial. Note that �M− �N+�= �−1�N−M�N− �M+�. Together with the fact that �M− �N+� is

real, this implies that �M+ �N−�= �−1�M−N�M− �N+�, which is a useful identity. The lack of orthogonality between different
displacements leads to the unusual results in the two-level-system dynamics which will be found later.

The next step is to reintroduce the two-level-system self-energy �, which is assumed to be small. Reformulating the
problem in terms of a matrix written in the displaced-oscillator basis allows the approximation to be carried out in a natural
way. Using the overlap functions calculated above, the matrix representing the Hamiltonian �1� may be written down:

H =�
E0

�

2
�0−�0+� 0

�

2
�1−�0+� 0

�

2
�2−�0+� ¯

�

2
�0−�0+� E0 −

�

2
�1−�0+� 0

�

2
�2−�0+� 0 ¯

0 −
�

2
�1−�0+� E1

�

2
�1−�1+� 0

�

2
�2−�1+� ¯

�

2
�1−�0+� 0

�

2
�1−�1+� E1 −

�

2
�2−�1+� 0 ¯

0
�

2
�2−�0+� 0 −

�

2
�2−�1+� E2

�

2
�2−�2+� ¯

�

2
�2−�0+� 0

�

2
�2−�1+� 0

�

2
�2−�2+� E2 ¯

] ] ] ] ] ] �

� , �8�

where the order of the columns and rows is �+ ,0+� , �−,0−� , �+ ,1+� , �−,1−� , . . . . The approximation consists of truncating the
matrix �8� to the block diagonal form

FIG. 1. Graphical representation of the displaced oscillator ba-
sis. The equilibrium position of the harmonic oscillator well is
shifted by an amount proportional to the coupling constant �, with
the direction of the shift determined by the state of the two-level
system. Each well retains its harmonic character, with the usual
eigenstates. Eigenstates with the same value of N are degenerate in
energy.
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H ��
E0

�

2
�0−�0+� 0 0 0 0 ¯

�

2
�0−�0+� E0 0 0 0 0 ¯

0 0 E1
�

2
�1−�1+� 0 0 ¯

0 0
�

2
�1−�1+� E1 0 0 ¯

0 0 0 0 E2
�

2
�2−�2+� ¯

0 0 0 0
�

2
�2−�2+� E2 ¯

] ] ] ] ] ] �

� . �9�

In this approximation, the self-energy of the two-level sys-
tem has been employed only where it is needed to lift the
degeneracy of the displaced-oscillator basis states �Eqs. �5�
and �6�; also see Fig. 1�. The natural interpretation of this
form of the Hamiltonian is that the oscillator will be re-
stricted to remain in the N± subspace if it has been initialized
in �N+� or �N−�. In other words, mixing occurs only between
levels in opposite wells which have the same value of N and
thus the same energy. In this picture the condition ���0
may be seen as a statement about statics: the spacing of the
oscillator energy levels is very large compared to the spacing
of the two-level system, so a transition in the two-level sys-
tem can never excite the oscillator. An alternative argument,
found in Sec. III C of Ref. 18, relies on the separation of
characteristic times in the two systems: given the assumption
���0, the oscillator responds almost instantaneously to
changes in ��̂z�, so that the oscillator dynamics is “slaved” to
the two-level-system dynamics.

Due to its simple block diagonal form, Eq. �9� may be
solved easily. The solutions in the Nth block are given by

��±,N� =
1
2

�� + ,N+� ± �− ,N−�� , �10a�

E±,N = ± 1
2��N−�N+� + EN. �10b�

These energies and eigenstates constitute the adiabatic ap-
proximation to lowest order in � /�0. A graphical represen-
tation is shown in Fig. 2.

Figure 3 plots the lowest-lying energy levels given in Eq.
�10b� as a function of the coupling strength � /�0 for differ-
ent values of the ratio � /�0. For comparison purposes, the
results of a numerical diagonalization of the full Hamiltonian
�Eq. �1�� are also shown.

Consider first the case � /�0=1/3, shown in Fig. 3�a�.
This is within the regime in which the approximate solution
�10� should be valid. The “ripple” structure imposed by the
Laguerre polynomials on the smooth variation of E with

� /�0 is immediately evident. This structure was noted in
Ref. 16 and interpreted as an interference between states dis-
placed in opposite directions. In the limit � /�0→� the dis-
tance between the wells becomes infinite and the overlap
�N− �N+�→0. With no mixing between the wells the spec-
trum becomes that of two identical harmonic oscillators and
the energy levels become pairwise degenerate. Agreement
with the numerical solution is excellent.

Another noteworthy feature of the structure of the energy
levels is the multiple crossings which appear between pairs
of levels. These are true crossings, not narrow avoided cross-

ings, allowed by conservation of the parity operator P̂
=exp�i��â†â+ 1

2 + 1
2 �̂x�� in Eq. �1�.12 The approximate eigen-

states �10a� are eigenstates of P̂; pairs of levels with different

eigenvalues of P̂ are allowed to cross. In other words, at the
crossing points the quantum states in the two displaced wells
destructively interfere with one another, destroying the tun-
neling process which mixes the states and provides the en-
ergy splitting.

Figure 3�b� shows the resonance case, � /�0=1. Plots for
this case also appear in Ref. 13. Interestingly, the agreement
between the approximate solution and the numerical solution
is still quite good, especially at larger coupling strengths.

FIG. 2. Graphical representation of the adiabatic approximation.
The two displaced oscillator wells, illustrated in Fig. 1, are now
allowed to interact. Levels with the same value of N become mixed;
the resultant energy splitting is proportional to the overlap of the
wave functions.
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Compare this to the RWA energy levels,1 E±,N
RWA

=N��0±� /2±��N, shown in Fig. 3�c�. The RWA gives
the correct limiting behavior as � /�0→0, but diverges from
the numerical solution starting around the point where the
paired levels first cross. This comparison illustrates the de-
pendence of the RWA upon the assumption of weak cou-
pling, even when the oscillator and two-level system are ex-
actly resonant.

Finally, Fig. 3�d� shows the case � /�0=3, which is out of
the regime in which the adiabatic approximation is expected
to hold. Plots of this case are given in Ref. 12; however, the
approximate and numerical solutions are shown in different
figures, making it difficult to compare the two. The plot
shown here demonstrates that the adiabatic approximation
breaks down in this regime except in the broadest qualitative
sense. When � /�0�1 spurious level crossings appear at
small values of � /�0 and a substantial phase difference de-
velops between the ripples in the numerical and approximate
solutions. Thus it may be seen that, as expected, the adiabatic
approximation is not a reasonable treatment for � /�0�1.

The displaced oscillator basis provides a physically intui-
tive picture for the derivation of an adiabatic approximation
in the regime � /�0�1. Comparing the adiabatic approxima-
tion with a numerical solution of the full Hamiltonian shows
that the approximation works quite well in the regime for
which it was derived. Although this approximation has been
derived previously, no authors seem to have explored its con-
sequences for experimental observables. Much of the re-
mainder of this paper will be devoted to a study of those
consequences.

III. DYNAMICAL BEHAVIOR

For applications in real systems, the dynamical behavior
of the two-level system is of particular interest. In this sec-
tion we discuss the time dependence of the two-level-system
observable �̂z, which corresponds to charge in a Cooper-pair
box. Three commonly used states are considered as initial
conditions for the harmonic oscillator: the Fock state, the
thermal state, and the coherent state, each of which may be
applicable in different situations. As might be expected, the

behavior of the two-level system changes dramatically de-
pending on the initial oscillator state. We have verified the
behavior obtained in the adiabatic approximation against a
numerical solution of the full Hamiltonian. Provided the ratio
�0 /� is made large enough, the agreement is excellent over
the short time scales which are likely to be experimentally
accessible; the value �0 /�=10 gives quantitative agreement
over several dozen periods of oscillation. Time evolution in
the adiabatic approximation shows a rich variety of behavior
which we demonstrate and classify.

Throughout this section the quantity to be examined is the
probability of obtaining the state ��� as a function of time,
P�−, t�. The initial state of the two-level system is taken to be
���, and the initial state of the oscillator is given in the
displaced basis corresponding to the state ���. This situation
might be obtained, for example, by turning on the bias volt-
age Vg between the NR and CPB, tuning the CPB gate bias
voltage Vb so that the net bias is away from the degeneracy
point, and allowing the CPB to relax to its ground state.
Preparation of the oscillator state would vary depending on
the type of state desired �Fock, thermal, or coherent�; the
discussion of each state includes some indication of how that
state might be prepared. At time t=0 the microwave field is
switched on and the system begins to evolve in time. Other
initialization schemes might be imagined, but starting the
oscillator in the displaced basis simplifies the mathematics.

An important point to keep in mind when comparing the
results presented here with results from the JCM is that they
are measured in different bases relative to their respective
Hamiltonians. In our notation, the state ��� is an eigenstate
of the two-level-system operator �̂z which is associated with
the interaction term of the Hamiltonian. In the JCM the ini-
tial state and the measured state of the atom are typically
chosen to be eigenstates of the bare atomic Hamiltonian
rather than the interaction Hamiltonian. These are natural
choices for the corresponding physical systems, but it should
be kept in mind that a degree of caution must be used in
comparing the two models.

The simplest dynamical behavior is obtained when the
oscillator begins in a displaced Fock state, such that ���0��
= �−� � �N−�. The time evolution of the probability to find the
two-level system in the initial state ��� is given by

FIG. 3. �Color online� Energy levels given by
analytic approximation methods �solid lines� and
by numerical solution of the full Hamiltonian
�dashed lines�. �a� Adiabatic approximation and
numerical solution with � /�0=1/3. �b� Adia-
batic approximation and numerical solution with
� /�0=1. �c� Rotating-wave approximation and
numerical solution with � /�0=1. �d� Adiabatic
approximation and numerical solution with
� /�0=3.
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P�− ,t� = ��− ,N−���t���2 = cos2����N�t/2� , �11�

where

���N� = ��N−�N+� = �e−2�2/�0
2
LN��2�/�0�2� . �12�

The CPB undergoes Rabi oscillations �due to the external
driving field�, with a frequency which is modified by the
strength of the coupling to the resonator; following Ref. 18
we refer to this as “adiabatic renormalization.”33 Figure 4
shows a plot of the renormalized frequencies �12� versus the
coupling strength � /�0 for small values of N. Unlike the
Rabi frequencies obtained in the JCM, the frequencies found
here are not monotonic functions of the coupling strength �
or of N for N�0.

One unexpected feature of these frequencies is the zeros
which occur as the coupling strength increases. Comparison
with a numerical solution of the full Hamiltonian shows that
the adiabatic approximation breaks down to some extent
around the “critical points” in the coupling strength at which
the renormalized Rabi frequency goes to zero. This point is
discussed in Ref. 16, and a higher-order formula is derived
which is valid even near the critical points. Some caution
must therefore be used in making predictions for Fock-state
initial conditions from our lowest-order formula. However,
Fock states are highly nonclassical states, and although some
methods for preparing such states in NR’s have been
proposed,9,19 the experiments appear difficult. This paper is
primarily concerned with time evolution from more realistic
initial states which involve some distribution of number
states. The distribution reduces the contribution from any
given number state, and our numerical studies indicate that
the approximation works well even when states are included
which have critical points near a given coupling strength.

The next initial condition for the oscillator which we con-
sider is a thermally occupied state, sometimes also referred
to as a chaotic state, in the displaced basis. This type of state
is expected for an oscillator in thermal equilibrium with its
environment, such as the NR’s studied in the recent experi-
ments of LaHaye et al.20 The thermal state is a fully mixed
state which must be described by a density matrix rather than

a state vector. The two-level system is again taken to be
initialized in the state ���, so that the initial density matrix
for the coupled system is given by

�th�0� = �− ��− � � �
N

pth�N��N−��N−� , �13�

where

pth�N� =
1

�1 + �N���1 + 1/�N��N �14�

and �N�= �e��0/kBT−1�−1 is the average number of quanta in
the oscillator at the temperature T.

Assuming that the system is weakly coupled to the ther-
mal environment so that the influence of the environment is
restricted to determining �N� �i.e., decoherence is not in-
cluded�, the time evolution of the system is given by

�th�t� = e−iHt/��th�0�eiHt/�

= �
N

pth�N��cos2����N�t/2��− ,N−��− ,N−�

+ sin2����N�t/2�� + ,N+��+ ,N+�

+ i sin����N�t/2�cos����N�t/2�

���− ,N−��+ ,N+�

− � + ,N+��− ,N−��� .

The reduced density matrix for the CPB is obtained by trac-
ing over the oscillator states:

�th
CPB�t� = �

N

pth�N��cos2����N�t/2��− ��− �

+ sin2����N�t/2�� + ��+ �

+ i sin����N�t/2�cos����N�t/2�

��N−�N+���− ��+ � − � + ��− ��� . �15�

From the reduced density matrix the probability of obtaining
the state ��� is found to be

Pth�− ,t� = �− ��th
CPB�t��− �

= �
N

pth�N�cos2����N�t/2� . �16�

If no further approximations are made, the sum in Eq.
�16� requires numerical evaluation. The parameter space is
complicated, but at least three qualitatively distinct regimes
of behavior may be found, characterized by the oscillator
temperature and the coupling strength. In the very-low-
temperature regime �N��0.01, the behavior consists of ordi-
nary Rabi oscillations with a frequency renormalized by the
coupling to the ground state of the oscillator. This renormal-
ization becomes significant for relatively large coupling
strengths � /�0�0.1–1.

However, due to the large width in N of the thermal dis-
tribution, the different frequencies ���N� involved in the time
series �16� tend to interfere with each other, producing a
decay in the amplitude of the oscillations. This effect, known
as a “collapse” in quantum optics,21,22 dominates the short-

FIG. 4. �Color online� Magnitude of the renormalized frequen-
cies given by Eq. �12� for values of N=0,1 , . . . ,5.

IRISH et al. PHYSICAL REVIEW B 72, 195410 �2005�

195410-6



time behavior at higher temperatures as long as � /�0 is not
too large. At longer times, the discrete nature of the spectrum
allows a partial rephasing of the oscillations, resulting in
“revivals” of the oscillation amplitude.22 These phenomena
are illustrated in Fig. 5. Several features are worth noting.
First is the nonzero amplitude in the collapse region; this
residual amplitude decreases with increasing temperature.
Second, the collapse time and the times at which the revivals
occur depend on the coupling strength: both the collapse
time and the revival time shorten as the coupling strength
increases. Finally, the amplitude of the revivals decreases
and their width increases as time goes on and the rephasing
becomes less complete. Some of these features can be under-
stood from a simple analytical approximation introduced in
the next section.

As the coupling strength is increased at a given tempera-
ture the behavior of the two-level system becomes increas-
ingly erratic. Shorter revival times cause successive revivals
to overlap and interfere so that the time evolution appears
irregular. The coupling strength at which the irregularity
emerges is closely tied to the temperature: the higher the
temperature, the smaller the coupling strength needed to pro-
duce irregular behavior. Higher temperature also results in
decreased revival amplitude: larger �N� corresponds to a
larger number of frequencies in the sum, which in turn
causes the rephasing to be less complete. However, a signa-
ture of the revivals persists in the form of a return to the bare
Rabi frequency even at temperatures high enough that the
behavior appears random and the revival amplitude is essen-
tially washed out. Figure 6 illustrates the lapse into erratic
behavior and the persistent revival signature.

The variation of behavior in the thermal-state adiabatic
approximation, from frequency renormalization to distinct
collapse and revival dynamics to apparent randomness, con-
trasts with the findings of Knight and Radmore on the same
type of system within the RWA.23 Although they distinguish
collapse and revival regions, the behavior within those re-
gions appears erratic, reminiscent of that found above for
large coupling strengths. Clear and well-defined revival
pulses do not occur in the JCM for any parameter values if

the oscillator begins in a thermal state. In fact, the basic
shape of the time-evolution curve is invariant in the JCM,
although the time scale and amplitude may change. The dis-
tinct revival areas found in the adiabatic approximation for
smaller coupling strengths more closely resemble those ob-
tained in the coherent-state JCM.22,24

Finally we turn to the case in which the oscillator begins
in a displaced coherent state. Coherent states are considered
to be the quantum states of the harmonic oscillator which
most closely approach the classical limit; it is expected that a
driven NR is approximated by a coherent state when the
external driving dominates thermal fluctuations. The initial
condition for the coupled system may be written as the pure
state

��coh�0�� = �− � � e−���2/2�
N=0

�
�N

�N!�1/2 �N−� , �17�

where � is the �complex� amplitude of the coherent state and
we will define �N�= ���2.

The time evolution of the corresponding density matrix
�coh�0�= ��coh�0����coh�0�� may be calculated in the same
way as before, with the resulting time-dependent probability

Pcoh�− ,t� = �
N=0

�

pcoh�N�cos2����N�t/2� , �18�

where pcoh�N�=e−�N��N�N /N!. Equation �18� has the same
form as Eq. �16� with the weighting function for the thermal
distribution replaced by the weighting function for the diag-
onal elements of the coherent state.

As before, the sum in Eq. �18� requires numerical evalu-
ation if no further approximations are made. However, the
qualitative behavior is more difficult to classify. The regime
�N��0.01 behaves much like the same regime in the thermal
case. Frequency renormalization is the dominant effect, vis-
ible for relatively large values of � /�0.

For values of �N��10 and fairly small coupling strengths
�, collapses and revivals appear which look similar to those
found in the JCM.22 The collapses are complete, with virtu-
ally no residual amplitude in the collapse region, unlike the

FIG. 5. �Color online� Behavior of the two-level-system occu-
pation probability in the high-temperature ��N�=100�, weak-
coupling regime for short times �main figure� and long times �inset�.
Throughout the paper all time-dependent plots have � /�0=1/10.

FIG. 6. �Color online� Behavior of the first revival region as a
function of temperature, with � /�0=0.1.
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above results for the thermal state. For small values of �N�
the coherent state does not have a wide enough spread in
frequencies to create a complete collapse, resulting in re-
sidual oscillations in the collapse region. Figure 7 compares
the coherent-state behavior with the thermal-state behavior.
As in the thermal case, a simple analytic approximation that
will be presented in the next section explains some of these
features.

At larger coupling strengths, however, the coherent-state
behavior does not necessarily lapse into irregularity as in the
thermal case. For large �N�, some unexpected results occur
as the coupling is increased. The explanation for this lies in
the nonmonotonic dependence of the modified Rabi frequen-
cies ���N� on both � and N. ���N� is plotted as a function of
� /�0 in Fig. 8; the values of N illustrated are chosen from
the coherent-state distribution with �N�=100 �inset� in order
to give a sense of how the spread in frequency corresponds
to the distribution in N. Figure 9 illustrates the resulting be-
havior of the two-level system in both time and frequency
space. The left-hand side shows plots of P�−, t� with �N�
=100 for several values of � /�0. Vertical lines in Fig. 8
correspond to those values of � /�0 for which time series are
given in Fig. 9. Considering the coherent-state weighting
function pcoh�N� as a function of frequency yields a Fourier-
transform-like distribution pcoh����N��, which gives the am-

plitude of each frequency in the sum P�−, t�. The weighted
frequency distribution corresponding to each time series is
plotted on the right-hand side of Fig. 9.

At zero coupling strength the weighted frequency distri-
bution consists of a  function located at ���N� /�=1. As the
coupling strength is increased, the center of the distribution
shifts toward smaller frequencies and the shape spreads out
and becomes approximately Gaussian, which results in well-
defined collapse and revival regions �Fig. 9�a��. When the
coupling strength approaches the critical point for the center
of the distribution �����N��=0�, the function pcoh����N�� be-
gins to fold back on itself, resulting in a very fast collapse
and strangely shaped revivals �Fig. 9�b��. The center of the
distribution function then shifts back to higher frequencies as
the second “hump” of the renormalized frequency function
���N� is traversed �Fig. 8�, and the shape again becomes al-
most Gaussian. Correspondingly the time-dependent prob-
ability appears more regular �Fig. 9�c��. At the peak of the
second hump of ���N� �� /�0�0.095 in Fig. 8� there is very
little dispersion in the frequencies corresponding to different
values of N, resulting in a nearly -function distribution for
pcoh����N�� and a very slow collapse �Fig. 9�d��. The fre-
quency distribution function then “bounces” back toward
low frequencies. Deviations from a Gaussian distribution
show up in the time-dependent probabilities as altered re-
vival pulse shapes �Fig. 9�e��. The behavior evolves between

FIG. 7. �Color online� Collapse and first revival for �a� coherent and �b� thermal states in a regime of regular behavior, � /�0=0.1. For
large �N�, the coherent-state model results in a complete collapse, with no residual oscillation amplitude in the collapse region; this is not true
for the thermal-state model.

FIG. 8. �Color online� Inset: normalized
coherent-state probability distribution as a func-
tion of N with �N�=100. Vertical lines correspond
to the values of N whose frequencies are plotted
in the main figure. Main figure: frequency renor-
malization as a function of coupling strength for
some representative values of N. Vertical lines
correspond to the coupling strengths used in Fig.
9.
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the examples shown here in a continuous manner, although
in places it varies quite rapidly with � /�0.

The previous discussion highlights the complexity of the
coherent-state adiabatic model. It should be noted that some
of the phenomena seen above are blurred out at smaller val-
ues of �N�. This may be understood by noting that two adja-
cent curves ���N� and ���N+1� diverge more strongly at small
values of N: compare Fig. 4 with N�1 and Fig. 8 with N
�100. Thus the weighted frequency distributions pcoh����N��
have a wider spread for small values of �N� despite the fact
that the coherent-state number distribution is narrower in N

for small �N�. The wider spread in frequency space for
smaller �N� results in more erratic behavior, without the re-
turns to regularity demonstrated in Fig. 9.

A similar analysis in frequency space also explains why
the thermal-state dynamics appears less complex than the
coherent-state dynamics. As a function of N, the maximum
of the thermal-state distribution is fixed at N=0 regardless of
the value of �N�, while the maximum of the coherent-state
distribution is given by �N�. The frequency shift in the state
N=0 is monotonic as a function of � /�0 and weak compared
to the shift for higher values of N �Fig. 4�. Thus the maxi-

FIG. 9. A few samples of the
unusual behavior which appears in
the coherent-state case with �N�
=100 �left-hand side� and the as-
sociated weighted frequency dis-
tributions pcoh����N�� �right-hand
side�. The coupling strengths used
are � /�0= �a� 0.04, �b� 0.06, �c�
0.072, �d� 0.096, and �e� 0.122.
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mum of the weighted frequency distribution pth����N�� for
the thermal state shifts less dramatically than the maximum
of pcoh����N�� for the coherent state and the changes in the
shape of the distribution are less pronounced.

Applying the frequency distribution function analysis to
the JCM shows how the complicated dependence on N and �
of the frequencies ���N� in the adiabatic approximation leads
to a much richer variety of behavior than that found in the
JCM. The Rabi frequencies in the JCM change monotoni-
cally with N and � in such a way that the frequency distri-
bution function changes in width but never in shape.
Changes in �N� and � in the JCM result in changes in the
amplitude and time scale of the evolution; however, the
shape of the time series is unaltered. The large variation of
behavior with �N� and � is a distinctive feature of the adia-
batic approximation, not found in the JCM.

IV. WEAK-COUPLING LIMIT

Although the adiabatic approximation allows evaluation
of the time-dependent behavior of the two-level system, the

results for thermal or coherent oscillator states are given by
infinite sums which must be numerically evaluated. This is
also true in the JCM, although integral approximation tech-
niques have been used to derive some approximate analytic
expressions.22,24 An interesting feature of the adiabatic ap-
proximation is that taking the weak-coupling limit allows
closed-form evaluation of the time evolution for both ther-
mal and coherent initial states.

For small values of �� /�0�2 the modified Rabi frequencies
given in Eq. �12� may be approximated as25

���N� � ��1 − �N + 1/2��2�/�0�2� . �19�

This approximation enables the sums in Eqs. �16� and �18� to
be carried out.25 For the thermal state, Eq. �16� becomes

Pth�− ,t� �
1

2
+

1

2

cos��t�cos���2�/�0�2t/2� + �1 + 2�N��sin��t�sin���2�/�0�2t/2�
1 + 4�N��1 + �N��sin2���2�/�0�2t/2�

. �20�

A comparison of Eqs. �16� and �20� is shown in Fig. 10. It is
apparent that even for relatively large values of � /�0 the
approximation to the sum works quite well in the initial col-
lapse region and captures the general qualitative behavior of
the function. In the limit �N��1, Eq. �20� reduces to

Pth�− ,t� �
1

2
+

sin �t

4�N�sin���2�/�0�2t/2�
. �21�

From this formula some of the characteristics discussed in
the previous section are immediately evident. Revivals occur
when ��2� /�0�2t /2=�m for m=1,2 , . . ., giving a revival
time �r=2� / ���2� /�0�2� which decreases with increasing
� /�0 as expected. The minimum oscillation amplitude in the
collapse region scales as 1 / �N�. However, Eq. �21� diverges
as t→0 as well as at the revival times, so it is not useful in
predicting the shape of the collapse envelope at short times
or the nature of the revival envelope function.

Within the weak-coupling approximation, the coherent-
state evolution may be evaluated as well. Equation �18�
yields the sum

Pcoh�− ,t� � 1
2 + 1

2e−2�N�sin2���2�/�0�2t/2�

�cos��N�sin���2�/�0�2t�

− �1 − �2�/�0�2/2��t� , �22�

which in the limit ��2� /�0�2t�1 reduces to

Pcoh�− ,t� � 1
2 + 1

2e−��N��2�2�/�0�4/2�t2

�cos����N� + 1
2��2�/�0�2 − 1��t� . �23�

The last form demonstrates the short-time Gaussian collapse
envelope which is also found in the coherent-state
JCM.21,22,24 However, the full expression given in Eq. �22� is
necessary in order to obtain revivals. Notice that the revival

FIG. 10. �Color online� Comparison of the first �adiabatic� ap-
proximation �Eq. �16�� and the second �weak-coupling� approxima-
tion �Eq. �20�� for the thermal-state model. Also shown is the en-
velope function derived from Eq. �21� by neglecting the rapidly
oscillating factor sin��t�. Parameters used are �N�=5 and � /�0

=0.1. Although these values are near the limit of validity of the
approximations used, the agreement up to the first revival is
excellent.
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time �r is the same as in the thermal case. A comparison of
Eqs. �18� and �22� is shown in Fig. 11. As in the thermal-
state case, the approximation to the sum works well in the
initial collapse region.

This approximation highlights once again the role of the
functional form of the modified Rabi frequencies �12� in con-
trolling the time evolution. Rabi frequencies linear in N are
obtained in a model similar to the JCM but involving three
atomic levels and two photons.26 Since all the frequencies
involved are integer multiples of the bare Rabi frequency, the
interfering oscillations rephase completely, leading to per-
fectly periodic, full-amplitude revivals for both coherent-
state and thermal-state initial conditions. As demonstrated
above, the renormalized Rabi frequencies in the adiabatic
approximation are linear in N to first order. This is not the
case in the usual two-level JCM, which yields Rabi frequen-
cies which go as the square root of N. The closer approach to
linearity in N explains why clear revivals may be found in
the adiabatic model even for a thermal state, while the
thermal-state JCM always produces erratic behavior.

V. EXPERIMENTAL PROSPECTS

The primary requirement for experimental exploration of
physics in the adiabatic regime is strong coupling at a large
detuning between the two-level system and the harmonic os-
cillator. Atom-cavity systems typically have coupling
strengths � /�0�10−7–10−6 at detunings of � /�0
�10−7–10−5 and are well described by the RWA.2,3 The
adiabatic regime requires numbers several orders of magni-
tude larger, unlikely to be achieved with atoms. However,
recent progress in solid-state systems suggests that experi-
mental implementation of the model discussed here may be
possible fairly soon. A system consisting of a CPB coupled
to a superconducting transmission line has achieved the
“strong-coupling limit” of CQED, in which coherent dynam-
ics occurs faster than the decoherence rates, as confirmed by
spectroscopic4 and time-domain5 experiments. The coupling
strength obtained at zero detuning was � /�0�10−3, which is

a significant improvement over atomic systems. However,
since the coupling is through the electric-dipole moment, it
may be difficult to increase the coupling strength by the two
orders of magnitude needed to get out of the RWA regime
and significant coupling at large detunings is unlikely.

Coupling strengths much larger than those possible with
dipole coupling may be achieved with capacitive or induc-
tive couplings. Some recent experimental results on a flux
qubit inductively coupled to a superconducting quantum in-
terference device �SQUID� that acts as both a measuring de-
vice and a quantum harmonic oscillator appear very
promising.6 Coherent oscillations in the qubit were observed
with Rabi frequencies ranging from very small to as large as
the qubit splitting frequency. Since the oscillator frequency
was about half the qubit splitting frequency, an analysis simi-
lar to that given below for the CPB-NR system yields values
of � /�0�2. Given the coupling strength of � /�0�0.1, the
adiabatic regime is already within the reach of this system.

Although it has not yet been experimentally demon-
strated, the system consisting of a CPB capacitively coupled
to a NR appears to be another potential candidate for achiev-
ing the adiabatic regime. The remainder of this section is
devoted to an analysis of the circumstances under which this
would be possible.

The Hamiltonian is given by9

HTOTAL = HCPB + HNR + Hint, �24�

HCPB = 4EC�ng − 1
2��̂z − 1

2EJ�̂x, �25�

HNR = ��0â†â , �26�

Hint = ���â† + â��̂z, �27�

where â† and â are harmonic-oscillator raising and lowering
operators which act on the NR, �̂z and �̂x are Pauli spin
matrices operating in the charge basis of the CPB, ng
= �CbVb+CgVg� /2e where Cb and Vb are the CPB biasing
capacitance and voltage and Cg and Vg are the capacitance
and voltage between the NR and the CPB, EC and EJ are the
Coulomb and Josephson energies, �0 is the NR oscillator
frequency in the absence of coupling, and �=
−4ECng

NR�xZP/�d where ng
NR=CgVg /2e, �xZP=� / �2m�0�

is the zero-point position uncertainty of the NR with effec-
tive mass m, and d is the distance between the NR and the
CPB.

One way of reducing this Hamiltonian to the form of Eq.
�1� is to bias the Cooper-pair box to the degeneracy point,
where ng=1/2. However, typical values of EJ /h are on the
order of several gigahertz, whereas the highest reported na-
nomechanical resonator frequency is about 1 GHz.27 The ap-
proximation we have derived in this paper is based on the
assumption that the effective splitting frequency of the two-
level system is much smaller than the frequency of the os-
cillator, ���0, which would be difficult to satisfy for
degeneracy-point biasing.

However, an effective Hamiltonian of the correct form
which satisfies the condition ���0 may be found given a
few reasonable assumptions. Physically, this involves biasing

FIG. 11. �Color online� As for Fig. 10, but for the coherent-state
model �Eqs. �18� and �22��; all parameters are identical. The enve-
lope shown is the Gaussian collapse function given by Eq. �23�
without the rapidly oscillating cosine factor.
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the CPB well away from degeneracy so that 4EC�ng−1/2�
�EJ /2 and applying an oscillating voltage to the CPB bias
gate, a procedure which is used in performing
spectroscopy.28 Assuming that the frequency of the oscillat-
ing voltage is equal to the splitting frequency of the box and
that the amplitude of the oscillating voltage is small, the
Hamiltonian may be approximated by Eq. �1� with
�=8gEJEC�1/2−ng� / ��8EC�1/2−ng��2+EJ

2�, where
g=4ECCbVb

ac /2e� is the Rabi frequency induced by the os-
cillating voltage. The Appendix contains a detailed deriva-
tion of this approximation.

Achievable parameters for an experiment of this type
align well with the regime in which the adiabatic approxima-
tion is valid. Starting with a NR frequency27 �0 /2�
=1 GHz, taking � /�0=1/10 requires an effective CPB Rabi
frequency � /2�=100 MHz. With CPB parameters EC /h
=20 GHz, EJ /h=7 GHz, and ng=1/4, the Rabi frequency
induced by the oscillating voltage should be about 0.5 GHz.
Assuming a bias-gate capacitance of Cb=10 aF, the required
amplitude for the oscillating voltage is Vb

ac=0.2 mV, which
may be achieved easily. Note that these numbers also satisfy
the requirements for derivation of the effective Hamiltonian
which are given in the Appendix. Since the coupling is ca-
pacitive, � /�0 is limited by how small the distance between
the NR and CPB island can be made and by how large a
voltage may be applied without damage to the NR. Values on
the order of � /�0�10−2–1 should be possible. All of these
parameters appear to be well within the reach of present
technology.

Unfortunately the dephasing times for coherent oscilla-
tions in a CPB which have been measured so far are quite
short. Vion et al.29 found a dephasing time of 0.5 �s at the
degeneracy point. As the bias voltage is tuned away from the
degeneracy point, the dephasing time drops rapidly,30 which
is attributed to low-frequency charge noise. In order to see
the effects predicted here, coherence times of several effec-
tive Rabi periods, on the order of several tens of nanosec-
onds, would be necessary; this would require significant im-
provement over current experiments. However, charge noise
is not believed to be intrinsic to these systems, and advances
in materials and fabrication may reduce the problem.

VI. CONCLUSION

The adiabatic approximation we have discussed in this
paper provides a rich and robust framework for exploring
spin-oscillator physics outside the rotating-wave approxima-
tion. Although it is derived under the assumption that the
two-level splitting frequency � is much smaller than the
oscillator frequency �0, it works well even when �=�0;
indeed, it provides a more accurate description at large cou-
pling strengths than the RWA. The energy levels obtained
from this model exhibit a nonmonotonic dependence on the
oscillator occupation number N and the coupling strength �.
This leads to complicated time-dependent behavior of the
two-level system, which may exhibit frequency renormaliza-
tion, collapse and revival of coherent oscillations, or appar-
ent randomness. Such behavior is quite sensitive to the initial
state of the oscillator and the coupling strength in some pa-
rameter regimes.

Although the adiabatic approximation is not a new result,
solid-state experiments currently underway provide motiva-
tion for a more thorough exploration of its consequences.
The pursuit of quantum computing has catalyzed the devel-
opment of new types of devices which act as artificial atoms.
Given the success of atom-cavity experiments in demonstrat-
ing various characteristics of quantum behavior, it is not sur-
prising that solid-state analogs are being pursued. Such sys-
tems have the capability to reach regimes, inaccessible to
traditional atom-cavity systems, in which the RWA is no
longer valid. This paper has demonstrated some of the com-
plexity which may be encountered at large detuning and
strong coupling.

In particular, we have chosen to focus on a charge-based
two-level system coupled to a nanomechanical resonator.
Observation of the two-level system may offer some insight
into the quantum nature of the resonator, just as atoms pro-
vide a sensitive probe for the nonclassical nature of electro-
magnetic fields. At fairly high resonator temperatures, the
shape of the collapse of the coherent oscillations in the CPB
may provide some information about the distribution of NR
states: a thermal state gives a different envelope function
than a coherent state. For either distribution, the shift from
collapse dynamics to frequency renormalization would be a
clear indication of near-ground-state cooling of the resonator.
Finally, the observation of revivals, which are a strictly non-
classical phenomenon, would give evidence for the quantum
nature of a macroscopic mechanical object. Such experi-
ments appear to be nearly within the reach of current tech-
nology.
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APPENDIX: DERIVATION OF THE EFFECTIVE CPB
HAMILTONIAN

The Hamiltonian for the Cooper-pair box in the basis of
charge states is31

HCPB = − 4EC� 1
2 − ng��̂z − 1

2EJ�̂x, �A1�

where �̂z and �̂x are Pauli spin matrices operating in the
charge basis of the CPB, ng=CbVb /2e where Cb and Vb are
the CPB biasing capacitance and voltage, and EC and EJ are
the Coulomb and Josephson energies. Equation �A1� may
also be written in terms of the mixing angle �
� tan−1�EJ / �8EC�1/2−ng���:

HCPB = − 1
2�E����cos ��̂z + sin ��̂x� , �A2�

where �E���=�8EC�1/2−ng��2+EJ
2. Alternatively, the

Hamiltonian may be written in the diagonal form

H̃CPB = − 1
2�E����̂z, �A3�

where the Pauli operators which operate in the eigenbasis of
HCPB are defined as
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�̂z � cos ��̂z + sin ��̂x, �A4�

�̂x � cos ��̂x − sin ��̂z, �A5�

�̂y � �̂y . �A6�

An oscillating voltage Vb
ac may be applied to the bias gate

of the CPB, resulting in an additional term in the
Hamiltonian28 Hac=�g cos��t��̂z where g=4ECCbVb

ac /2e�.
In the eigenbasis of HCPB this becomes

H̃ac = 1
2�g�ei�t + e−i�t��cos ��̂z − sin ���̂+ + �̂−�� , �A7�

where �̂±= 1
2 ��̂x± i�̂y� are raising �lowering� operators for the

CPB.
We will assume that ���E��� /� so that the rotating-

wave approximation may be used to derive a time-
independent effective Hamiltonian for the CPB with oscillat-
ing bias voltage. The first step is to transform into a reference
frame which rotates about the �̂z axis at the frequency �.

This may be accomplished by the transformation H̃rot

= Û†H̃Û− i�Û†dÛ /dt with Û=exp�i�t�̂z /2�. Noting that

Û†�̂±Û=exp�
i�t��̂±, the Hamiltonian H̃CPB+ H̃ac trans-
forms to

H̃rot = − 1
2���̂z + 1

2�g�ei�t + e−i�t�cos ��̂z

− 1
2�g sin ���̂+ + �̂− + e−2i�t�̂+ + e2i�t�̂−� , �A8�

where ���E��� /�−� is the detuning between the CPB
splitting frequency and the frequency of the oscillating bias
voltage. As long as we are interested in motion on the time-
scale of 1 /g�1/�, the time-dependent terms in Eq. �A8�
may be neglected. With this approximation and transforming
back to the charge basis, we obtain

HCPB � − 1
2���cos ��̂z + sin ��̂x�

− 1
2�g sin ��cos ��̂x − sin ��̂z� . �A9�

If we assume the CPB to be biased far from degeneracy such
that sin ��cos � and take the detuning �=0, we find an
effective Hamiltonian for the CPB,34

HCPB
eff = − 1

2���̂x, �A10�

where ��g sin � cos �. The Hamiltonians for the NR and
the interaction between the CPB and NR remain as given in
Eq. �24�. Combining all the terms yields a Hamiltonian for
the coupled system of the form of Eq. �1�.
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