
PHYSICAL REVIEW A 93, 042109 (2016)

Coherent exciton dynamics in a dissipative environment maintained
by an off-resonant vibrational mode

E. K. Levi,1,* E. K. Irish,2 and B. W. Lovett1,†
1SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom

2School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 4 February 2016; published 14 April 2016)

The interplay between an open quantum system and its environment can lead to both coherent and incoherent
behavior. We explore the extent to which strong coupling to a single bosonic mode can alter the coherence
properties of a two-level system in a structured environment. This mode is treated exactly, with the rest of the
environment comprising a Markovian bath of bosonic modes. The strength of the coupling between the two-level
system and the single mode is varied for a variety of forms for the bath spectral density in order to assess whether
the coherent dynamics of the two-level system are modified. We find a clear renormalization of the site population
oscillation frequency that causes an altered interaction with the bath. This leads to enhanced or reduced coherent
behavior of the two-level system, depending on the form of the spectral density function. We present an intuitive
interpretation, based on an analytical model, to explain the behavior.
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I. INTRODUCTION

Open quantum systems have been an active area of research
for decades, but only recently have measurements been able
to probe the dynamical effects of a coupled environment in
detail [1–4]. The environment has historically been thought
to lead to deleterious decoherence of the open system, but
it is now accepted that the role of the environment can be
much more subtle than this. In particular, the importance of
structured environments in the dynamics and coherence of
open quantum systems is now beginning to be recognized. For
example, a series of recent theoretical [5–12] and experimen-
tal [13–16] studies has provided strong evidence that strongly
coupled discrete molecular vibrations play a significant role
in the speed, efficiency, and quantum coherence of energy
transfer in photosynthetic and other molecular systems. In a
different context, the high degree of control and precision
possible in artificial nanosystems has enabled experimental
measurement and engineering of noise spectral densities
in condensed matter systems. Studies on micromechanical
resonators have revealed a strongly subohmic spectral density
(SD) [17]; in another series of experiments, a superconducting
flux qubit was used to probe the SD of a microwave
transmission line, which could be tuned between ohmic and
Lorentzian forms using partial reflectors [18].

To mathematically model an open quantum system exactly
one must fully capture the dynamics of the environment,
and this is usually an impossible task: its Hilbert space
is vast. Necessarily the environment must be treated using
various approximations. One common description employs
the Markov approximation, meaning that future behavior
depends only on the current state, with no memory of
preceding interaction [19]. Markovian environments are gen-
erally straightforward to simulate since the dissipative system
dynamics are characterized by a set of constant decay rates,
which are found from the easily obtained SD function.
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When system-environment correlations decay more slowly
the approximation becomes invalid and non-Markovian ap-
proaches are needed. There exists a spectrum of techniques for
dealing with non-Markovianity to varying degrees including
master equations [19], quasiadiabatic path integrals [20,21],
quantum Monte Carlo techniques [22,23], hierarchy equations
of motion [24], multilayer [25] and multiconfiguration time-
dependent Hartree theory [26], time-dependent numerical [27]
and density matrix [28] renormalization-group approaches,
time-dependent variational matrix product states [29], and
Dirac-Frenkel methods [30,31].

In this paper we introduce non-Markovianity straightfor-
wardly by including part of the “environment” in the open
system; that is, our open system consists of both the two-level
system (TLS) whose dynamics we want to model and a
single oscillator mode (SM). The rest of the (bosonic) bath
is assumed to be weakly coupled to the open system and
to be Markovian. Thus we are able to accurately study a
structured environment consisting of a continuous background
of modes with a strongly coupled single mode at one particular
frequency. This framework maps to a host of physical
situations: for example, a multisite chromophore array in a
protein bath typical of photosynthesis, where local protein
vibrational modes interact strongly with excitons [32], and
superconducting qubits coupled to nanomechanical oscillators
or microwaves in resonators [33,34]. We present our work in
the context of a two-site energy transfer system, or dimer, in
the two-state subspace of single exciton levels.

A single-mode representation of certain strong features of
a structured environmental coupling has been studied previ-
ously [35–39], and symmetries have been exploited to reduce
the complexity of the resulting system description [40,41].
However, the particular configuration of the TLS-SM-bath
system investigated here is not represented in these earlier
studies, in which the SM either couples to, or is not distin-
guished from, the bath. A similar model incorporating a single
common mode was used to demonstrate enhanced coherence in
the excitonic dynamics of an asymmetric dimer with individual
Markovian baths for each dimer site [42]. In contrast to our
model, a polaron transform was used to approximately treat
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FIG. 1. Schematic of the model given in Eq. (1). The symmetric
dimer is composed of two identical sites with a Förster-type
interaction between them (green circles). This is linearly coupled
to a Markovian bosonic environment of oscillators (short red wavy
lines). One bosonic mode of the environment (long blue wavy line)
is assumed to be much more strongly coupled to the dimer than the
others and is, therefore, considered part of the system that must be
treated exactly.

non-Markovian effects. A further asymmetric dimer model
explores the role of vibrational modes on the electronic
coherence in photosynthetic protein complexes [8].

In the next section we specify our TLS-SM-bath system,
deriving a weak-coupling master equation to describe its
dynamics. In Sec. III we present numerical results for the
dynamics of the TLS across a broad range of parameters. We
analyze and discuss these findings in Sec. IV and propose an
intuitive and analytical interpretation of the complex dynamics
observed. We conclude in Sec. V.

II. MODEL

The symmetric dimer consists of two identical sites, labeled
“0” and “1,” each with a ground |G〉 and a single-exciton
excited state |E〉. Both sites are coupled to a single vibrational
mode and a bosonic Markovian environment as displayed in
Fig. 1. The total Hamiltonian may be written

HFull = HTLS + HSM + HTLS-SM + HB + H TLS-B. (1)

The electronic part of the dimer Hamiltonian is

HTLS = ε(|E0〉 〈E0| + |E1〉 〈E1|)
− J (|E0G1〉 〈G0E1| + H.c.), (2)

where the excitation energy at each dimer site is ε and the
Förster coupling between them is J . The terms involving the
vibrational mode are

HSM = �â†â, (3)

HTLS-SM = −(g0 |E0〉 〈E0| + g1 |E1〉 〈E1|)(â† + â), (4)

where the vibrational mode has frequency � and creation and
annihilation operators â† and â and couples to each site with
strength g0 = −g1 = g. The terms involving the rest of the
bosonic bath are

HB =
∑

q

ωqb̂
†
qb̂q, (5)

HTLS-B = −
∑

q

(hq,0 |E0〉 〈E0| + hq,1 |E1〉 〈E1|)(b̂†q + b̂q).

(6)

This environment is comprised of harmonic modes of wave
vector q with frequencies ωq, creation and annihilation opera-
tors b̂

†
q and b̂q, and coupling strengths of hq,0 = −hq,1 = hq.

The Hamiltonian in Eq. (1) consists of three uncou-
pled subspaces with basis vectors {|G0G1〉}, {|E0E1〉}, and
{|E0G1〉, |G0E1〉}. In order to study energy transfer dynamics
we may focus only on the last: the two-dimensional single
excitation subspace. To simplify notation we then define
|0〉 = |E0,G1〉 and |1〉 = |G0,E1〉.

In this subspace our Hamiltonian becomes

HF = −J X̂ − Ẑg(â† + â) − Ẑ
∑

q

hq(b̂†q + b̂q)

+�n̂ +
∑

q

ωqn̂q, (7)

where n̂ = â†â and n̂q = b̂
†
qb̂q are the number operators for

the SM and the qth bath mode. We have now reformulated
the problem into that of a single TLS interacting with the
SM and environment where the site-basis Pauli matrices
are Ẑ = |0〉〈0| − |1〉〈1| and X̂ = |0〉〈1| + |1〉〈0|. The form
in Eq. (7) is that of a modified spin-boson Hamiltonian; the
spin-boson model is one of the most utilized and investigated
descriptions of open quantum system behavior [43–48]. While
not exactly solvable (except in special cases) it contains
information about the interplay between a two-level “spin”
system and a harmonic bath. Our model differs from the
standard spin-boson model by the addition of the SM to
the part of the system that is treated exactly. Both the SM
and the bath couple to the TLS via a linear displacement with
respect to the site basis.

Disregarding the bath for now, Eq. (7) becomes

H = −J X̂ − Ẑg(â† + â) + �n̂. (8)

This is amenable to the Fulton-Gouterman transformation
(FGT), which can simplify its solution. First introduced in
1961 [49] and later refined and extended [50], the FGT exploits
the parity symmetries of the system to diagonalize the Hamil-
tonian in the TLS subspace. It is a unitary transformation, and
although there are various equivalent forms in the literature we
use [51]

U = 1√
2

[|0〉〈0| − |1〉〈0| + P̂ (|0〉〈1| + |1〉〈1|)]. (9)

The oscillator parity operator, P̂ = (−1)n̂, obeys the anticom-
mutation relations

{P̂ ,â} = {P̂ ,â†} = 0. (10)

The function of the FGT is to isolate states of the same
parity, which do not couple to states of opposite parity. As
shown in Appendix A, the FGT is equivalent to a change of
basis and state reordering. Application of the FGT to Eq. (8)
yields

H̃ = UHU † = H

2

+
|0〉〈0| + H

2

−
|1〉〈1|, (11)

thus creating subspace Hamiltonians of conserved parity:

H± = �n̂ − g(â† + â) ∓ J P̂ . (12)
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The eigenstates of these transformed Hamiltonians, expanded
in the site basis, are

|ψ±
k 〉 = 1√

2
[±|0〉 + P̂ |1〉]|φ±

k 〉, (13)

where |φ±
k 〉 are the eigenstates of the excitation parity subspace

Hamiltonians. To clarify, the Schrödinger equations are then
H±|φ±

k 〉 = E±
k |φ±

k 〉 and H̃ |ψ±
k 〉 = E±

k |ψ±
k 〉.

Using a Fock basis for the SM and |±〉 ≡ (|0〉 ± |1〉)/√2
for the TLS, the FGT shows that the Hamiltonian takes a
tridiagonal form that can be diagonalized efficiently. It is of
course necessary to truncate the expansion of the SM, but for
all calculations we ensure that simulations are numerically
converged. With this in mind we refer to our treatment of this
TLS-SM system as exact.

We now reintroduce the bath. In the |±〉 basis, the
Hamiltonian in Eq. (8) becomes

HS = −J σ̂z − σ̂xg(â† + â) + �n̂, (14)

where now σ̂z = |+〉〈+| − |−〉〈−|, σ̂x = |+〉〈−| + |−〉〈+|,
and we have introduced the subscript “S” to denote the system
of TLS and SM. The Hamiltonian describing the interacting
system and bath is then

HF = HS +
∑

q

ωqn̂q + σ̂x

∑
q

hq(b̂†q + b̂q). (15)

From this Hamiltonian we can derive a Markovian master
equation, assuming that the TLS-SM system is coupled only
weakly to the environmental oscillators. We have found a
convenient form for the eigenstates of HS which simplifies the
master equation derivation if we describe the σ̂x interaction in
this basis; this is shown in Appendix B.

The general form of the master equation following the Born-
Markov approximation is, in the interaction picture,

dρS(t)

dt
= −

∫ ∞

0
ds TrB{[HI(t),[HI(t − s),ρS(t) ⊗ ρB]]},

(16)

which describes the dynamics of a reduced system density ma-
trix, ρS(t). ρB is the bath density matrix, assumed to represent
a thermal state at all times, and HI(t) is the interaction-picture
interaction Hamiltonian [19]. For our problem this becomes

dρS(t)

dt
=

∑
k,k′

{[	(−
kk′) + 	′(
kk′)]

× [2ζ̂−
k′kρS(t)ζ̂+

kk′ − ζ̂+
kk′ ζ̂

−
k′kρS(t) − ζ̂−

k′kζ̂
+
kk′ρS(t)]

+ [	(
kk′) + 	′(−
kk′)]

× [2ζ̂+
kk′ρS(t)ζ̂−

k′k − ζ̂−
k′kζ̂

+
kk′ρS(t) − ζ̂+

kk′ ζ̂
−
k′kρS(t)]}.

(17)

The ζ̂±
ij operators are Lindblad operators describing transitions

between the FGT subspaces, from eigenstate j to eigenstate
i; these are defined explicitly in Eqs. (B18) and (B19). The
transition rates are governed by 	 and 	′, which are defined in
Eqs. (C11)–(C14); these rely on bath operator correlators and,
by extension, the SD χ (ω) = ∑

q |hq|2 δ(ω − ωq), and they
are derived in Appendix C. 
kk′ is the difference between
FGT subspace eigenvalues, E+

k − E−
k′ . We used numerical

simulations [52] to solve Eq. (17), the full derivation of which
is given in Appendix C.

We use the SD

χm(ω) = Amωme−ω2/ω2
m,c , (18)

where varying m moves between an ohmic (m = 1) and a
superohmic (m > 1) form. The Gaussian cutoff in this defini-
tion ensures that χ → 0 for ω � ωm,c, the cutoff frequency,
meaning that high-frequency modes do not contribute to the
dynamics. We impose χ (ω) = 0 for ω � 0 and we introduce
ωp to denote the frequency at the peak of the SD, which is
related to m and ωm,c. For comparison we also sometimes use
a Lorentzian-like form for the SD,

χL(ω) = ALωW 2

(ω − ωL,c)2 + W 2
, (19)

where W is the half-width at half-maximum and ωL,c is
determined by fixing ωp. The normalization factors, Am and
AL, in Eqs. (18) and (19) are related to a property of the bath
known as the reorganization energy:

λ =
∫ ∞

0
dω

χ (ω)

ω
. (20)

This quantifies the energy associated with the bath as it
interacts with the TLS [53]. Defining a fixed value of λ ensures
fair SD comparisons in simulations; normalization factors can
then be calculated using Eq. (20). We also fix ωp to ensure
peak alignment during comparisons.

We have studied dynamics for m = 1, 3, 5, 7 and
Lorentzian spectral densities; for reference these are shown
(for a constant λ and ωp) in Fig. 2. Ohmic spectral densities
are frequently used for low temperatures or for surface-surface

FIG. 2. Comparative plot of the five spectral densities considered
here, with λ = 0.05 THz and ωp = 10 THz. The ohmic SD is given
by m = 1, while m = 3, 5, and 7 represent increasingly peaked
superohmic spectral densities. The Lorentzian SD has width W =
1.5 THz.
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tunneling problems, while superohmic descriptions apply well
to bulk phonon baths [43,54]. The Lorentzian SD in Fig. 2 is
far more peaked than the ohmic and superohmic curves and is
a simple and physical analytic tool for investigating structured
spectral densities with sharp features.

Before we discuss results in Sec. III we introduce our initial
conditions. There are two straightforward ways of initializing
a thermal SM: (i) thermalizing the SM before “activating” its
interaction with the TLS and (ii) thermalizing the SM while
the two subsystems are interacting. The first method can be
suitably described by a thermalized distribution of Fock states
of the SM. The second leads to a thermal distribution with
respect to the appropriately displaced oscillator states of the
SM [55]. For simplicity, we focus on the second case in the
results discussed here.

III. RESULTS

Unless otherwise stated, simulations are carried out at T =
300 K with J = 5 THz, � = 100 THz, and λ = 0.05 THz.
The initial state of the system is localized at site 1, with
the corresponding displaced oscillator in a thermal state, and
all spectral densities have ωp = 2J , the bare TLS frequency.
These parameters have been chosen to display the off-resonant
SM behaviors most clearly.

We start with an ohmic SD. The effect of the bath on
the TLS, with no SM present (g = 0), is to damp the TLS
population oscillations until a thermal equilibrium steady state
is reached. As can be seen in Fig. 3, this characteristic remains
when increasing the SM coupling strength. There is a visible
damping enhancement effect brought about as g becomes
larger that is likely due to the mixing into higher energy
states of the SM, which provides an increased number of
decay pathways due to the broad ohmic SD. There is also

FIG. 3. Three-dimensional plot of the site 1 population dynamics
as a function of g for an ohmic (m = 1) SD. An oscillation frequency
renormalization effect is visible.

an oscillation frequency renormalization visible as a subtle
curvature in the peaks as a function of g.

To further explore these effects we proceed to display the
dynamics of superohmic spectral densities with m = 3, 5, and
7, as well as the Lorentzian SD, in Fig. 4. The qualitative
difference between the dynamics in Fig. 3 and that in Fig. 4 is
clear: as g is increased the oscillations are enhanced instead of
damped. The behavior is most easily appreciated when looking
at the second half of the simulated time in Fig. 4, where the
weak-g plateaus are replaced with population oscillations for
strong g. These oscillations become more pronounced with
increasing m, as the SD becomes more peaked, and the largest
effect is found for the Lorentzian SD, which is the most peaked
of those displayed.

IV. ANALYSIS AND DISCUSSION

Without the single mode, an initial excitation at one site
of the effective TLS oscillates in time between the two sites;
the amplitude of this oscillation is gradually damped by the
interaction with the environment. Figures 3 and 4 show that
the inclusion of the single mode complicates the dynamics
considerably. However, the main features can be understood
using an analytical approximation for the TLS-SM system in
the absence of the bath.

The adiabatic approximation of Irish et al. [55] provides
a physically intuitive basis for the TLS-SM system in the
case, as here, where the energy splitting of the TLS (here
2J = 10 THz) is much smaller than the frequency of the SM
(here � = 100 THz). In this parameter regime the system
may be approximated by two harmonic potential wells, each
associated with one site of the TLS. The effect of the interaction
between the SM and the TLS is to displace each harmonic
well in position space. To lowest order in the TLS energy, the
eigenstates of the system are given by

|�±,n〉 = 1√
2

(|0〉 ⊗ |n0〉 ± |1〉 ⊗ |n1〉), (21)

where |i〉 corresponds to excitation of site i and |ni〉 denotes
a number state of the displaced well associated with site i.
Specifically, in terms of the original SM basis states |n〉 the
displaced bases are given by |n0〉 = exp[−(g/�)(â† + â)] |n〉
and |n1〉 = exp[(g/�)(â† + â)] |n〉. The approximate energies
are given by

E±,n = �

(
n − g2

�2

)
± Je−2g2/�2

Ln

(
4g2

�2

)
, (22)

where Ln(x) is a Laguerre polynomial. As shown in Fig. 5, the
energy spectrum breaks into a series of well-spaced doublets,
where each doublet corresponds to a different value of n.

Within this approximation, it is readily seen that an initial
excitation at site i, with the SM in a number state in
the displaced basis |ni〉, will undergo Rabi-like oscillations
between the two sites. The frequency of this oscillation is
determined by the doublet splitting, 2Je−2g2/�2

Ln(4g2/�2).
From this formula it is evident that one effect of increasing the
coupling g is a renormalization of the oscillation frequency
to smaller values, as shown in Figs. 3 and 4. Moreover, the
renormalized frequency depends on the number state of the
SM. Hence a distribution of different n values in the initial
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FIG. 4. Site 1 population dynamics as a function of g for superohmic spectral densities with (a) m = 3, (b) m = 5, (c) m = 7, and (d)
Lorentzian width W = 1.5 THz. A clear enhancement is seen for large values of g, which becomes more pronounced for the more peaked
spectral densities.

state of the SM will lead to multiple oscillation frequencies in
the dynamics of the TLS population.

For the SM frequency and temperature values we consider,
only two doublets contribute significantly. A thermal state of
a 100-THz mode at T = 300 K is in the ground state with
probability p(0) ≈ 92%, the first excited state has probability
p(1) ≈ 7%, and all other states have a probability of less than
1%. Therefore the dynamics in Figs. 3 and 4 are dominated by
just two oscillation frequencies. Figure 6(a) shows how these
two frequencies change with the coupling g. Both frequencies
display a strong renormalization effect, shifting to smaller

values as g increases; however, the frequency corresponding
to n = 1 changes more rapidly with g.

In addition to the frequency shift shown clearly in Fig. 3,
several other aspects of the dynamics illustrated in Fig. 4
can be explained by the frequency renormalization effect.
Figure 4 shows an apparently counterintuitive decrease in
the damping of the oscillations as g is increased. This arises
from the combination of frequency renormalization and the
peaked form of the superohmic spectral densities. The spectral
densities have been chosen to have their peaks at the bare
oscillation frequency 2J . As g increases, the oscillation
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FIG. 5. Numerically determined energy spectrum of the TLS-SM
system in the absence of the environment, as a function of the coupling
g. Energy levels take the form of a series of closely spaced doublets.

frequencies shift to lower values, moving away from the
maximum of the SD. Figure 6(b) illustrates this effect for the
frequencies corresponding to the n = 0 and n = 1 doublets.
The vertical lines indicate the renormalized frequencies for
a range of g values, showing the points at which the SD
is sampled. The smaller value of χ (ω) at lower frequencies
means that the system undergoes less damping. In particular,
the n = 1 oscillation frequency decreases more rapidly with g

and thus is damped much less than the n = 0 mode.
In Figs. 4(a)–4(c) the oscillations that persist out to long

times for large g correspond to the n = 1 component of the
initial state, as the dominant n = 0 component is damped away
fairly rapidly. As the SD becomes more strongly peaked,
this effect becomes more pronounced, which is consistent
with the trend visible in Fig. 4. The oscillations along the
g axis arise from the g-dependent shift in frequency of
the n = 1 component. By contrast, the dominant oscillation
visible in Fig. 4(d) at large g values corresponds to the n = 0
renormalized frequency. As shown in Fig. 6(b), the Lorentzian
SD at this frequency is much smaller than the ohmic or
superohmic SDs and hence the n = 0 oscillation decays much
more slowly.

In Fig. 7 we show long-time, nanosecond dynamics for
the m = 3 superohmic SD and a very strong coupling of g =
50 THz. There is a very long-lived oscillatory component to the
dynamics that shows no signs of decay even after 5 ns—though
we have checked numerically that it does eventually reach a
steady-state population of 0.5. This feature is also visible, but
not so obvious, in Figs. 4(a)–4(c) through the seemingly fixed
population, away from the equilibrium population of 0.5, for
t � 6 ps. An initial transient regime exists over a period of
tens of picoseconds and can just be discerned in Fig. 7. During
this transient stage other oscillatory frequencies present in

FIG. 6. (a) Energy splittings in the adiabatic approximation as a
function of g, for the doublets corresponding to the n = 0 (black line)
and n = 1 (blue line) states of the displaced SM. Vertical lines indicate
the values of g used in (b). (b) Comparison of the doublet splittings
with the various spectral densities, showing the frequencies at which
the spectral densities are sampled for various values of g. Vertical lines
indicate the n = 0 and n = 1 splittings for the values of g represented
in (a) by the same line style. In each case the higher frequency
corresponds to n = 0, and the lower to n = 1. As g increases, both
frequencies decrease but they also move farther apart.

the dynamics are damped away, leaving only the single slow
feature associated with the n = 1 doublet, which, as shown in
Fig. 6(a), is close to degeneracy at g = 50 THz. The amplitude
of this persistent slow oscillation corresponds to the probability
of the n = 1 state in the initial thermal distribution of the SM,
here about 7%.

This interpretation of our results predicts that the effect
of increasing g should be reversed if the peak of the SD
lies at a frequency below the bare 2J splitting of the TLS.
Then as g increases the renormalized oscillation frequencies
will be pushed toward the peak of the SD rather than away
from it, resulting in increased damping. In Fig. 8 we present
the dynamics for such a scenario, where the peak of the
Lorentzian SD is chosen to be ωp = J = 5 THz, shown as the
shifted Lorentzian in Fig. 6(b). Note that the choice to keep
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FIG. 7. An example of long-time dynamics for a strongly coupled
TLS-SM system, g = 50 THz. The frequency and amplitude of the
oscillation correspond to the n = 1 state of the SM. Strong frequency
renormalization due to the large value of g means that the bath has
an extremely weak damping effect, allowing coherent oscillations to
persist out to very long times despite the influence of the environment.

the renormalization energy λ constant means that the peak
height is lower than the Lorentzian centered at ωp = 2J . For
values of g ∼ 40–50 THz, the renormalized n = 0 frequency
corresponds to a point where χL(ω) is increasing rapidly; the

FIG. 8. Site 1 population dynamics of the TLS where the bath
SD is given by a Lorentzian with peak frequency ωp = J = 5 THz.
In this case increasing g pushes the oscillation frequencies of the
system toward the peak of the SD rather than away from it, resulting
in greater damping.

corresponding increase in damping is dramatically evident in
the dynamics.

V. CONCLUSION

We have found that a single strongly coupled bosonic mode
can have a profound effect on the coherent dynamics of an open
TLS. Contrary to naive expectations, our work shows that
strong coupling to a vibrational mode can actually enhance
quantum coherent features in site-to-site dynamics. Moreover,
we have shown that this effect happens for a mode that is
far off-resonant with the TLS’s natural oscillation frequency
and that it can occur at room temperature. We have also
found that certain spectral densities exhibit this coherence
enhancement to differing degrees; this is a consequence of
their peakedness and, so, how quickly the frequencies at which
the SD is sampled are moved away from the peak by the SM
coupling. We point out that some features of the results we
have presented could be reproduced by including the SM as
an additional strong peak in the bath SD and then using a
Markovian master equation to generate the dynamics. It is
vital, however, to make a polaron transform first, as might be
expected when trying to describe this extra strongly coupled
mode. This transformation enables the system decay rate
to depend on the spectral density sampled at the coupling
energy J renormalized by the polaronic dressing [56]. It is
this renormalization that could move the position at which the
spectral density is sampled when the extra mode is included.
Of course, this model would not be able to capture the complex
multifrequency effects we predict in this paper.

Our results show that off-resonant modes contribute to
the dynamics when treated exactly, providing justification
for efforts extending theoretical tools to accommodate such
treatments. If an open TLS interacts with an environment with
a SD like those investigated here, we have shown that its
coherence properties are altered. SD modification has recently
been demonstrated through reservoir engineering [18], and we
speculate that using this technology with a strongly coupled
vibrational mode could lead to a tool for maintaining or
quickly damping oscillatory dynamics. Future work will need
to generalize our approach to explore asymmetric dimers
strongly coupled to more than one mode. Nonetheless, our
findings provide a tantalizing look at the possibilities for novel
quantum effects in complex open quantum systems.
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APPENDIX A: FULTON-GOUTERMAN
TRANSFORMATION

The way that the FGT isolates parity subspaces can be seen
if we take the Hamiltonian in Eq. (8) and transform it from the
site into the superposition basis, |±〉 = 1√

2
(|0〉 ± |1〉). Writing

out the matrix representation of the resulting Hamiltonian

042109-7



E. K. LEVI, E. K. IRISH, AND B. W. LOVETT PHYSICAL REVIEW A 93, 042109 (2016)

(keeping the SM in the Fock basis) we get

H =

⎛
⎜⎜⎜⎜⎝

|+0〉 |−0〉 |+1〉 |−1〉 · · ·
〈+0| −J 0 0 −h · · ·
〈−0| 0 J −h 0 · · ·
〈+1| 0 −h −J + � 0 · · ·
〈−1| −h 0 0 J + � · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠.

(A1)
If we look at even and odd excitation parity states we see only
elements linking states of like parity, meaning one can build
two subspace Hamiltonians,

H+ =

⎛
⎜⎝

|+0〉 |−1〉 · · ·
〈+0| −J −h · · ·
〈−1| −h J + � · · ·
...

...
...

. . .

⎞
⎟⎠,

H− =

⎛
⎜⎝

|−0〉 |+1〉 · · ·
〈−0| J −h · · ·
〈+1| −h −J + � · · ·
...

...
...

. . .

⎞
⎟⎠. (A2)

In operator form these subspace Hamiltonians are the same as
those in Eq. (12), which are obtained after direct application
of the FGT.

APPENDIX B: INTERACTION PICTURE

The interaction picture form of our interaction Hamiltonian,
HI(t), is reached using a unitary operator approach,

HI(t) = ei(HS+HB)tHIe
−i(HS+HB)t , (B1)

where all of the Hamiltonians on the right-hand side are in their
Schrödinger form as found in Eq. (15), with HB = ∑

q ωqn̂q

and HI = σ̂x

∑
q hq(b̂†q + b̂q). Since [HS,HB] = 0 and since

HI can be written in a separable form we can also formulate
HI(t) in a separable form,

HI(t) = eiHSt σ̂xe
−iHSt ⊗ eiHBt

∑
q

hq(b̂†q + b̂q)e−iHBt . (B2)

Now the benefit of expressing σ̂x in terms of the FGT
eigenstates, {|ψ±

k 〉}, can be seen: the exponentiated HS will
simply act on its eigenstates in Eq. (B2) and be replaced
with the corresponding eigenvalues (which can be found
numerically).

To change its basis we first split σ̂x into the constituent parts
σ̂+ = |+〉〈−| and σ̂− = |−〉〈+|, the TLS raising and lowering
operators (σ̂x = σ̂+ + σ̂−). The system eigenstates in Eq. (13)
exist in a Hilbert space spanning the TLS and the SM so we
need

σ̂+n = σ̂+ ⊗ I =
∑

n

|+n〉〈−n| (B3)

and the corresponding equation for σ̂−n. Next we ex-
pand the eigenstates in the superposition basis: Eq. (13)

becomes

|ψ±
k 〉 = 1

2 [(P̂ ± 1)|+〉 − (P̂ ∓ 1)|−〉]|φ±
k 〉. (B4)

The oscillator subspace eigenstates are expressed in a Fock
basis as

|φ±
k 〉 =

∑
n

C±
kn|n〉, (B5)

with the coefficients, C±
kn, obtained after numerical solution

of the eigensystem via C±
kn = 〈n|φ±

k 〉. With these definitions
we can see that the |±〉 states pick out different parity Fock
states due to their relation with P̂ in Eq. (B4); our eigenstates
become

|ψ±
k 〉 =

∑
even n

C±
kn| ± n〉 +

∑
odd n

C±
kn| ∓ n〉. (B6)

In this form it can clearly be seen that 〈ψ±
k |ψ∓

k′ 〉 = 0 due to
the orthogonal natures of the Fock and superposition states.

The change of basis of the TLS raising and lowering
operators is done by calculating the overlap of the eigenstates
with the operators in order to find the corresponding matrix
elements:

〈ψ±
k |σ̂+n|ψ±

k′ 〉 = 〈ψ±
k |σ̂−n|ψ±

k′ 〉 = 0, (B7)

〈ψ±
k |σ̂±n|ψ∓

k′ 〉 =
∑

even n

C±
nkC

∓
k′n, (B8)

〈ψ∓
k |σ̂±n|ψ±

k′ 〉 =
∑
odd n

C∓
nkC

±
k′n. (B9)

The reversed subscripts on the first C± in each pair [compared
with the definition in Eq. (B5)] is to be interpreted as complex
conjugation, C±

nk = (C±
kn)∗. Finally, our raising and lowering

operators are

σ̂±n =
∑
k,k′

{ ∑
even n

C±
nkC

∓
k′n|ψ±

k 〉〈ψ∓
k′ |

+
∑
odd n

C∓
nkC

±
k′n|ψ∓

k 〉〈ψ±
k′ |

}
. (B10)

Building the σ̂xn operator removes one layer of complexity
from the operators in Eq. (B10); adding them together means
the even n terms are added to the odd n terms, leaving a sum
over all n,

σ̂xn =
∑
k,k′,n

{C+
nkC

−
k′n|ψ+

k 〉〈ψ−
k′ |+C−

nkC
+
k′n|ψ−

k 〉〈ψ+
k′ |}. (B11)

We can now bring σ̂xn into the interaction picture using
Eq. (B2), giving

eiHSt σ̂xne
−iHSt =

∑
k,k′,n

{
C+

nkC
−
k′ne

i
kk′ t |ψ+
k 〉〈ψ−

k′ |

+C−
nk′C

+
kne

−i
kk′ t |ψ−
k′ 〉〈ψ+

k |}. (B12)

Here the indices on the second element have been exchanged to
allow for a common constant, 
kk′ , to exist. This is comprised
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of the eigenvalues of the two states contributing to the element,


kk′ = E+
k − E−

k′ . (B13)

The bath operator part of the separable Eq. (B2) moves into
the interaction picture using the identities

eαn̂b̂e−αn̂ = b̂e−α, (B14)

eαn̂b̂†e−αn̂ = b̂†eα. (B15)

This allows us to compute Eq. (B2) and express the full
interaction picture, interaction Hamiltonian as

H I
I (t) =

∑
k,k′

ei
kk′ t B̂†(t)ζ̂+
kk′ + e−i
kk′ t B̂†(t)ζ̂−

k′k

+ ei
kk′ t B̂(t)ζ̂+
kk′ + e−i
kk′ t B̂(t)ζ̂−

k′k. (B16)

The B̂(t) are the interaction picture bath operators such that

B̂(t) =
∑

q

hqb̂qe
−iωqt . (B17)

The ζ̂ ’s are Fulton-Gouterman state switching operators
defined as

ζ̂+
kk′ =

∑
n

C+
nkC

−
k′n|ψ+

k 〉〈ψ−
k′ |, (B18)

ζ̂−
k′k =

∑
n

C−
nk′C

+
kn|ψ−

k′ 〉〈ψ+
k |. (B19)

APPENDIX C: MASTER EQUATION

Now we can proceed to evaluate the double commutator in
Eq. (16), which requires combining the various operators we
have discussed up until now; noting that ζ̂+

kk′ ζ̂
+
ll′ = ζ̂−

k′kζ̂
−
l′l = 0

helps to reduce the number of terms. Due to the separable
nature of the formulas presented, the partial trace over the
double commutator boils down to a trace over the bath opera-
tors in each additive term in the expanded commutators. This
again allows for a further reduction of terms as 〈B̂(t)B̂(t ′)〉 =
〈B̂†(t)B̂†(t ′)〉 = 0, where the use of angular brackets denotes
the trace over a thermal density matrix (the assumed state of
the environmental bath). A multimode thermal density matrix
takes the form

ρB = N
∏

p

e−βωpn̂p , (C1)

with the normalization constant

N =
∏
p′

1 − e−βωp′ . (C2)

This could also be written as N = ∏
i Ni , where Ni = 1 −

e−βωi .
Now let us evaluate the nonzero bath correlation functions

〈B̂†(t)B̂(t ′)〉 and 〈B̂(t)B̂†(t ′)〉. We show how to explicitly
evaluate the first of these:

〈B̂†(t)B̂(t ′)〉 = N
∑
{n}

〈n0,n1 . . . |
∑

q

hqâ
†
qe

iωqt
∑

q′
hq′ âq′e−iωq′ t ′

∏
p

e−βωpn̂p |n0,n1 . . . 〉

= N
∑
{n}

〈n0,n1 . . . |
∑

q

h2
qn̂qe

iωq(t−t ′)
∏

p

e−βωpn̂p |n0,n1〉 . . .

= N
∑
{n}

〈n0,n1 . . . |h2
0n̂0e

iω0(t−t ′)
∏

p

e−βωpn̂p + h2
1n̂1e

iω1(t−t ′)
∏

p

e−βωpn̂p + . . . |n0,n1 . . . 〉

= N
∑
{n}

[
〈n0,n1 . . . |h2

0n̂0e
iω0(t−t ′)

∏
p

e−βωpn̂p |n0,n1 . . . 〉 + 〈n0,n1 . . . |h2
1n̂1e

iω1(t−t ′)
∏

p

e−βωpn̂p |n0,n1 . . . 〉 + . . .

]

=
∏

i

Ni

∑
{n}

[
h2

0n̂0e
iω0(t−t ′)

∏
p

e−βωpn̂p + h2
1n̂1e

iω1(t−t ′)
∏

p

e−βωpn̂p + . . .

]
. (C3)

In the last line of Eq. (C3) each instance of the product over p has all of its elements cancel with the elements in the normalization
product [Eq. (C2)], except when p equals the index of the term the product is a part of. This leads to

〈B̂†(t)B̂(t ′)〉 =
∑

p

Nph
2
pe

iωp(t−t ′)
∑
np

npe
−βωpnp =

∑
p

h2
p
eiωp(t−t ′)

eβωp − 1
. (C4)

The last step in the process of solving the partial trace involves the SD,

χ (ω) =
∑

q

|hq|2 δ(ω − ωq), (C5)

which uses the bath coupling factors, hq, to describe the action of the bath. Due to the delta function summation we can write
the identity ∫

dω χ (ω)φ(ω) =
∫

dω
∑

k

h2
kδ(ω − ωk)φ(ω) =

∑
k

h2
k

∫
dω φ(ω)δ(ω − ωk) =

∑
k

h2
kφ(ωk). (C6)
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Applying this to Eq. (C4) gives, finally,

〈B̂†(t)B̂(t ′)〉 =
∫

dω χ (ω)
eiω(t−t ′)

eβω − 1
. (C7)

The evolution of the second bath correlation function follows similarly, using ââ† = n̂ + 1 instead of â†â = n̂. This leads to

〈B̂(t)B̂†(t ′)〉 =
∫

dω χ (ω)
e−iω(t−t ′)

1 − e−βω
. (C8)

By employing the identity ∫ ∞

0
dsei(a−b)s = πδ(a − b) + P

i(a − b)
(C9)

(where we neglect the second, principle value, term, which would lead to only small Lamb shifts), the integrals over s, in Eq. (16),
and ω, introduced by the bath correlation functions, can now be performed. Let us look at one of the four terms produced when
expanding the double commutator present in Eq. (16):

H I
I (t)H I

I (t − s)ρ(t) =
∑

k,k′,p,p′
[〈B̂†(t)B̂(t − s)〉 + 〈B̂(t)B̂†(t − s)〉]

× [ei(
kk′ −
pp′ )t ei
pp′ s ζ̂+
kk′ ζ̂

−
p′pρS(t) + e−i(
kk′ −
pp′ )t e−i
pp′ s ζ̂−

k′kζ̂
+
pp′ρS(t)]. (C10)

Again, to proceed we explicitly show here one example of how to evaluate these terms, with the others being similarly computable:

∫ ∞

0
ds 〈B̂†(t)B̂(t − s)〉e±i
pp′ s =

∫ ∞

0
ds

∫ ∞

0
dω χ (ω)

ei(ω±
pp′ )s

eβω − 1
=

∫ ∞

0
dω χ (ω)

δ(ω ± 
pp′ )

eβω − 1
= πχ (∓
pp′)

e∓β
pp′ − 1
= 	(∓
pp′).

(C11)

We have defined 	 (and also shortly 	′) to simplify future equations; it describes the thermal decay rate of the associated
transition denoted 
. The three remaining terms are∫ ∞

0
ds 〈B̂†(t − s)B̂(t)〉e±i
pp′ s = πχ (±
pp′)

e±β
pp′ − 1
= 	(±
pp′), (C12)∫ ∞

0
ds 〈B̂(t)B̂†(t − s)〉e±i
pp′ s = πχ (±
pp′)

1 − e∓β
pp′ = 	′(±
pp′ ), (C13)∫ ∞

0
ds 〈B̂(t − s)B̂†(t)〉e±i
pp′ s = πχ (∓
pp′)

1 − e±β
pp′ = 	′(∓
pp′ ). (C14)

We are now in a position to write out the first form of the differential equation we have been working towards from Eq. (16):

dρS(t)

dt
= −

∑
k,k′,p,p′

{[	(−
pp′) + 	′(
pp′ )]ei(
kk′−
pp′ )t ζ̂+
kk′ ζ̂

−
p′pρS(t) + [	(
pp′) + 	′(−
pp′ )]e−i(
kk′−
pp′ )t ζ̂−

k′kζ̂
+
pp′ρS(t)

+ [	(−
kk′) + 	′(
kk′)]ei(
kk′−
pp′ )t ρS(t)ζ̂+
kk′ ζ̂

−
p′p + [	(
kk′) + 	′(−
kk′)]e−i(
kk′ −
pp′ )t ρS(t)ζ̂−

k′kζ̂
+
pp′

− [	(−
pp′ ) + 	′(
pp′ )][ei(
kk′+
pp′ )t ζ̂+
kk′ρS(t)ζ̂+

pp′ + e−i(
kk′ −
pp′ )t ζ̂−
k′kρS(t)ζ̂+

pp′]

− [	(
pp′) + 	′(−
pp′ )][e−i(
kk′+
pp′ )t ζ̂−
k′kρS(t)ζ̂−

p′p + ei(
kk′−
pp′ )t ζ̂+
kk′ρS(t)ζ̂−

p′p]

− [	(
kk′) + 	′(−
kk′)][ei(
kk′+
pp′ )t ζ̂+
kk′ρS(t)ζ̂+

pp′ + ei(
kk′ −
pp′ )t ζ̂+
kk′ρS(t)ζ̂−

p′p]

− [	(−
kk′) + 	′(
kk′)][e−i(
kk′+
pp′ )t ζ̂−
k′kρS(t)ζ̂−

p′p + e−i(
kk′ −
pp′ )t ζ̂−
k′kρS(t)ζ̂+

pp′]}. (C15)

In order to simplify Eq. (C15) we employ the secular approximation, which assumes that if the oscillatory exponential factors
have a nonzero frequency (i.e., 
kk′ − 
pp′ �= 0 �= 
kk′ + 
pp′), then they correspond to a rapid oscillation compared to the time
scale over which we have assumed the system density matrix changes. These terms are neglected. To ensure 
kk′ − 
pp′ = 0 we
can insert δk,qδk′,q ′ into the summation. Now 
kk′ + 
pp′ → 2
kk′ , which in general is nonzero, so these terms are neglected also
[the special case of 2
kk = 0 would similarly mean 	(±
kk) = 0 and thus would not contribute to the dynamics]. Equation (C15)
can now be written in Lindblad form, thus we obtain the stated result in Eq. (17).
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