501 research outputs found

    Innovative value creation in BRICS

    Get PDF
    The main scientific problem is the development of the cost modeling methodology of value-added accounting for the purpose of obtaining estimates of the value-added level of innovative products, which is necessary for making managerial, investment, production and other decisions at all levels of management and for monitoring the results of such decisions. The purpose of the article is to develop a methodology for accounting for the value added of innovative products, regarding the technology readiness levels for commercialization based on the analysis of problems and growth points of the national economy using the example of the BRICS international collaboration. The article revealed the features of innovative development of leading and developing countries, the need for the national economy in international collaborations to intensify innovative development, the existing problems in accounting for the value added of innovative products, the developed proprietary methodology for accounting for the value added of innovative products, regarding the technology readiness level for commercialization. The theoretical significance lies in the development of methodological foundations for accounting for the creation and distribution of value added, and the practical significance is determined by the fact that for the first time the methodology takes into account the technology readiness levels for commercialization, which gives a new approach to the practical assessment of the value-added innovation.peer-reviewe

    Value formation of innovative product : a way to commercialization

    Get PDF
    Purpose: The issues of studying the value formation process of an innovative product, from the idea to the prototype to the commercialization of the output from the production line, depending on the type of innovations, are the aims of this article. Design/Methodology/Approach: The conceptual framework of "value" and "innovations" is explored and the theoretical basis of the value approach is revealed at the beginning of the article. The definition of an innovative product is given and the development process and the mechanism of its value formation at each development phase are revealed. Findings: The value-added elements are specified, from the idea generation to the commercialization of the innovative product. The expenses for the calculation items and the development phases of the innovative product are estimated. Practical Implications: Categories of the innovation-based economy development, as "innovation", "innovative product", and "value" are not sufficiently studied. Intensive discussions are taking place in the scientific community regarding what an innovative product is and how its value is formed. A specific result of intellectual activity, at the initial stage of its formation represents an idea that is difficult to be estimated. Originality/Value: The problematics for further research of value formation of innovative products depending on their specific nature is put.The article was prepared in the course of carrying out research work within the framework of the project part of the state task in the field of scientific activity in accordance with the task No. 26.2758.2017 / PCh (26.2758.2017 / 4.6) for 2017-2019 on the topic "System for the formation and distribution analysis of the value of innovative products based on the infrastructure concept".peer-reviewe

    The effect of aluminum ion implantation on the grain size and structure of UFG titanium

    Get PDF
    Using the transmission electron microscopy technique, we have studied the structural-phase state of UFG titanium with an average grain size ~0.2 μm implanted with aluminum ions. An MEVVA-V.RU source has been used to implant the specimen at room temperature, implantation time 5.25 hours, and irradiation dose 1⋅1018 ion/cm2. To produce the UFG titanium samples, we have employed the combined multiple uniaxial pressing technique (abc-pressing) followed by grooved rolling and subsequent annealing at 573 K for one hour. The samples have been studied in two states: 1) before implantation (initial state) and 2) after implantation at a distance 70-100 nm from the sample surface. We have obtained the aluminum concentration profile of implanted α-Ti. It has been established that the maximum concentration of aluminum is 70 at.% and the thickness of the implanted layer is 200 nm. We have determined the grain distribution functions over the grain size, calculated the grain anisotropy coefficient before and after implantation. It has been established that implantation decreases the average longitudinal and transversal sizes of α-Ti grains, and reduces the anisotropy coefficient by three times. It has been established that aluminum implantation into titanium brings about formation of a whole set of phases with different crystal lattices, namely, β-Ti, TiAl3, Ti3Al, TiC, and TiO2

    Hardening by ion implantation of VT1-0 alloy having different grain size

    Get PDF
    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case

    Modification of structural phase state and mechanical properties of poly-grained titanium alloy implanted by aluminum ions

    Get PDF
    The paper presents TEM analysis of microstructure, phase composition, and mechanical properties of commercially pure titanium. These properties of two types of grains are compared before and after modification of titanium by aluminum ions, namely: large grains (1.4 μm) and small (0.5μm) grains. The analysis shows that ion implantation results in a considerable improvement of mechanical properties of both large and small grains throughout their implantation depth. However, with increase of the grain size, the stress in the ion-modified surface layer decreases while in the subsurface layer it increases

    Microstructural Features in Multicore Cu–Nb Composites

    Get PDF
    none5siThe study is devoted to heavily drawn multicore Cu–18Nb composites of cylindrical and rectangular shapes. The composites were fabricated by the melt-and-deform method, namely, 600 in situ rods of Cu–18%Nb alloy were assembled in a copper shell and cold-drawn to a diameter of 15.4 mm (e = 10.2) and then rolled into a rectangular shape the size of 3 × 5.8 mm (e = 12.5). The specimens were analyzed from the viewpoints of their microstructure, microhardness, and thermal stability. The methods of SEM, TEM, X-ray analysis, and microhardness measurements were applied. It is demonstrated that, at higher strain, the fiber texture ⟨110⟩Nb∥ ⟨111⟩Cu∥ DD (drawing direction), characteristic of this material, becomes sharper. The distortions of niobium lattice can be observed, namely, the {110} Nb interplanar distance is broadened in longitudinal direction of specimens and compacted in transverse sections. The copper matrix lattice is distorted as well, though its distortions are much less pronounced due to its recrystallization. Evolution of microstructure under annealing consists mainly in the coagulation of ribbon-like Nb filaments and in the vanishing of lattice distortions. The structural changes in Nb filaments start at 300–400 °C, then develop actively at 600 °C and cause considerable decrease of strength at 700–800 °C.openElena N. Popova, Irina L. Deryagina,Evgeniya G. Valova-Zaharevskaya, Ruello Maria Letizia, Vladimir V. PopovElena N., Popova; Irina L., Deryagina; Evgeniya G., Valova-Zaharevskaya; Ruello, Maria Letizia; Vladimir V., Popo

    Influence of ultrafine particles on structure, mechanical properties, and strengthening of ductile cast iron

    Get PDF
    Integrated assessment of the influence of an ultrafine mixture TiO2 + ZrO2 + Na3AlF6 on the formation of the structure, mechanical properties, and strengthening of ductile cast iron was made in the paper. The structural-phase composition of ductile cast iron was studied by means of scanning electron microscopy and a transmission electron microscope. Plastic deformation was determined during testing of uniaxial compression. The change in the structural state of the alloy and in its mechanical properties was observed. Quantitative assessment of contributions of separate physical mechanisms to strengthening characteristics of unmodified and modified ductile cast iron was made

    Influence of the grain size on the dispersion strengthening of VT1-0 alloy implanted with aluminum ions

    Get PDF
    The method of translucent diffraction electronic microscopy conducted researches of a microstructure and phase structure of a titanic alloy of VT1-0 implanted by ions of aluminum. There are two types of grains; 1) large grains (LG) with an average size of 1.4 microns and 2) the small grains (FG) with an average size of 0.5 μm. It is established that as a result of radiation the ion-alloyed layer, on the basis of α-Ti grains is formed. The sizes, form and places of localization of secondary phases (Ti3Al, Al3Ti and TiO2) depend on the size of grain of a titanic matrix. The size of dispersive hardening of σor for different type of grains on depth of the ion-alloyed layer is calculated. It is shown that in MZ the size σor is provided only with TiO2 particles, in LG – generally TiO2 particles.</jats:p

    Metabolic Remodeling during Long-Lasting Cultivation of the Endomyces magnusii Yeast on Oxidative and Fermentative Substrates

    Get PDF
    In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2–4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process
    corecore