

17th International Conference on the Strength of Materials (ICSMA 17)

BOOK OF ABSTRACTS

Editors: A. Dlouhý, L. Kunz

Institute of Physics of Materials, Academy of Sciences of the Czech Republic

Brno, 2015

Intensive formation of intermetallic phases under ions implantation by aluminum of titanium target

A. V. Niconenko¹, N. A. Popova², I. A. Kurzina¹, E. L. Niconenko², E. V. Kozlov²

1: Tomsk State University. Russia

2: Tomsk State University of Architecture and Building. Russia

The results of investigation of the microstructure and phase composition of titanium samples with different grain size (0.3 µm. 1.5 µm. 17 µm) implanted by aluminum ions (dose is 1×1018 ions cm²) using Mevva - V source (RU). It is established that polyphase implanted layers on the basis of α -titanium grains is formed as a result of ion irradiation. The size, shape and localization of the secondary phases (TiO₂, Ti₂O, TiC, Ti₃Al, Al₃Ti) depends on the grain size of the titanium matrix. It was found that the separation of nanoscale TiO₂ grains was observed mainly at dislocations in the bulk of the matrix grains. Formation of Ti₂O was observed by a big regions on titan surface with mezo polycrystalline grains (17 µm). It was established that the ordered Ti₃Al phase was formed at a depth more than 200 nm of the implanted layer on the grain boundaries of a titanium target.