406 research outputs found

    Second harmonic beam analysis, a sensitive technique to determine the duration of single ultrashort laser pulses

    Get PDF
    The second harmonic beam generated in a noncollinear arrangement allows the observation of the autocorrelation functio: A compact optical beam splitter and imaging system eliminates alignment problems. Single pulses of 1 ps duration and approximately 10−8 joule energy are readily observed using an optical multichannel analyser

    Quantum Electronics

    Get PDF
    Contains reports on three research projects.National Science Foundation (Grant PHY77-07156)Joint Services Electronics Program (Contract DAABO7-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F-44620-76-C-0079)M.I.T. Sloan Fund for Basic Researc

    220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    Full text link
    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date

    Experimental study of a positive surge. Part 1: Basic flow patterns and wave attenuation

    Get PDF
    A positive surge results from a sudden change in flow that increases the depth. It is the unsteady flow analogy of the stationary hydraulic jump and a geophysical application is the tidal bore. Positive surges are commonly studied using the method of characteristics and the Saint-Venant equations. The paper presents the results from new experimental investigations conducted in a large rectangular channel. Detailed unsteady velocity measurements were performed with a high temporal resolution using acoustic Doppler velocimetry and non-intrusive free-surface measurement devices. Several experiments were conducted with the same initial discharge (Q=0.060 mÂł/s) and 6 different gate openings after closure resulting in both non-breaking undular and breaking bores. The analysis of undular surges revealed wave amplitude attenuation with increasing distance of surge propagation were in agreement with Ippen and Kulin theory. Also, undular wave period and wave length data were relatively close to the values predicted by the wave dispersion theory for gravity waves in intermediate water depths

    Tidal propagation in strongly convergent channels

    Get PDF
    Simple first‐ and second‐order analytic solutions, which diverge markedly from classical views of cooscillating tides, are derived for tidal propagation in strongly convergent channels. Theoretical predictions compare well with observations from typical examples of shallow, “funnel‐shaped” tidal estuaries. A scaling of the governing equations appropriate to these channels indicates that at first order, gradients in cross‐sectional area dominate velocity gradients in the continuity equation and the friction term dominates acceleration in the momentum equation. Finite amplitude effects, velocity gradients due to wave propagation, and local acceleration enter the equations at second order. Applying this scaling, the first‐order governing equation becomes a first‐order wave equation, which is inconsistent with the presence of a reflected wave. The solution is of constant amplitude and has a phase speed near the frictionless wave speed, like a classical progressive wave, yet velocity leads elevation by 90°, like a classical standing wave. The second‐order solution at the dominant frequency is also a unidirectional wave; however, its amplitude is exponentially modulated. If inertia is finite and convergence is strong, amplitude increases along channel, whereas if inertia is weak and convergence is limited, amplitude decays. Compact solutions for second‐order tidal harmonics quantify the partially canceling effects of (1) time variations in channel depth, which slow the propagation of low water, and (2) time variations in channel width, which slow the propagation of high water. Finally, it is suggested that phase speed, along‐channel amplitude growth, and tidal harmonics in strongly convergent channels are all linked by morphodynamic feedback
    • 

    corecore