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ABSTRACT 
A positive surge results from a sudden change in flow that increases the depth. It is the unsteady flow analogy of the 
stationary hydraulic jump and a geophysical application is the tidal bore. Positive surges are commonly studied using 
the method of characteristics and the Saint-Venant equations. The paper presents the results from new experimental 
investigations conducted in a large rectangular channel. Detailed unsteady velocity measurements were performed with 
a high temporal resolution using acoustic Doppler velocimetry and non-intrusive free-surface measurement devices. 
Several experiments were conducted with the same initial discharge (Q=0.060 m³/s) and 6 different gate openings after 
closure resulting in both non-breaking undular and breaking bores. The analysis of undular surges revealed wave 
amplitude attenuation with increasing distance of surge propagation were in agreement with Ippen and Kulin theory. 
Also, undular wave period and wave length data were relatively close to the values predicted by the wave dispersion 
theory for gravity waves in intermediate water depths. 
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1. INTRODUCTION. 

Positive surges are commonly observed in man-made and natural channels. In water supply canals 

for irrigation and water power purposes, a positive surge may be induced by a partial or complete 

closure of a control structure, e.g. a gate, resulting in a sudden change in flow that increases the 

water depth [1, 2]. In rivers and estuaries, a form of positive surge is the tidal bore which is a 

positive surge of tidal origin [3]. Tsunami-induced bores were also observed [3]. Although a 

positive surge may be analysed using a quasi-steady flow analogy, its inception and development is 

commonly predicted using the method of characteristics and Saint-Venant equations. After 

formation, the flow properties immediately upstream and downstream of the surge front must 

satisfy the continuity and momentum principles [1, 2]. For a fully-developed positive surge, the 

surge is seen by an observer travelling at the surge speed U as a quasi-steady flow situation called a 
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hydraulic jump in translation (Fig. 1). In a rectangular, horizontal channel and neglecting friction 

loss, if the subscripts 0 and conj refer, respectively, to the initial flow conditions and conjugate flow 

conditions, i.e., immediately behind the positive surge front, the solution of the continuity and 

momentum equations applied to a control volume across the surge front yields: 
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where dconj and d0 are respectively the new and initial flow depths (Fig. 1), and the Froude numbers 

Fr and Frconj are the surge Froude numbers defined respectively as: 
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where U is the surge velocity as seen by a stationary observer on the channel bank and positive in 

the upstream direction and V0 is the flow velocity (Fig. 1). 

Positive surges were studied by hydraulicians and applied mathematicians for a few centuries. 

Since Barré de Saint-Venant [4], Boussinesq [5], and Favre [6], several researchers discussed the 

development of a surge [7, 8, 9, 10, 11, 12, 14]. Classical experimental works on undular surges 

included Zienkiewicz and Sandover [15], Sandover and Holmes [16], Benet and Cunge [17], and 

Soares Frazão and Zech [18]. Ponsy and Carbonnell [19] and Treske [20] presented a 

comprehensive description of surges in trapezoidal channels of large sizes. Most of previous 

experimental studies were limited to visual observations and sometimes free-surface measurements, 

but more recently, unsteady turbulence measurements were carried out using particle image 

velocimetry (PIV) and acoustic Doppler velocimetry (ADV) techniques [21, 22, 25]. Finally, 

numerical studies of a surge were recently presented [18, 26, 27]. 

In this paper and its companion, the authors present the results from new experimental works 

conducted in a large rectangular channel to document the flow field and hydrodynamics 
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characteristics in positive surges. All experiments were performed with the same initially steady 

flow rate but for different downstream gate openings after closure. The basic features of the surges 

and the analysis of wave height attenuation for the undular surges are discussed in this paper. A 

comparison between previous literature theories and the experimental data for undular surges are 

presented in the companion paper as well as the results about the unsteady flow field including 

Reynolds stresses. Overall this study was aimed at confirming and extending previous findings 

about hydrodynamics characteristics of a positive surge. 

2. EXPERIMENTAL SETUP. CHANNEL AND INSTRUMENTATION. 

The experiments were performed in a large tilting flume at the University of Queensland previously 

used by Chanson and co-workers [22, 23, 24, 25]. The channel was 0.5 m wide, 12 m long and it 

was horizontal. The flume was made of smooth PVC bed and glass walls, and waters were supplied 

by a constant head tank. The water discharge was measured with orifice meters with an accuracy of 

less than 2%. A tainter gate was located next to the downstream end, at x=11.15 m from the channel 

intake, where x is the distance from the channel upstream end. Its controlled and rapid closure 

induced a positive surge propagating upstream. 

The study was carried out with a constant flow rate (Q=0.060 m³/s). Before the study of the surges, 

the steady flow in the channel was studied using an acoustic Doppler velocimeter (ADV) Sontek™ 

16MHz micro-ADV equipped with a two-dimensional side-looking head. Also, in steady flow, 

water depths were measured using rail mounted pointer gauges and seven acoustic displacement 

meters Microsonic™ Mic + 25/IU/TC with an accuracy of 0.18 mm and a response time of 50 ms. 

The acoustic displacement meters were located at x=1.985 m, 2.995 m, 4 m, 5 m, 6 m, 9 m and 10.9 

m downstream the channel intake. 

After that, several experiments were conducted with the same initial discharge (Q=0.060 m³/s) and 

6 different gate openings after closure (Table 1). They resulted in both undular (non-breaking) and 

in breaking surges (Table 1). The unsteady water depths were measured with the above acoustic 

displacement meters, while the turbulent velocity measurements were conducted with the above 

ADV system. For both the steady and unsteady state experiments, the velocity range was 1.0 m/s, 
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the sampling rate was 50 Hz and the data accuracy was 1% of the velocity range. The translation of 

the ADV probe in the vertical direction was controlled by a fine adjustment travelling mechanism 

connected to a Mitutoyo™ digimatic scale unit. The error on the vertical position of the probe was 

Δz<0.025 mm. The accuracy on the longitudinal position was Δx<± 2 mm. All measurements were 

conducted on the channel centreline. Additional information was obtained with digital cameras 

Panasonic™ Lumix DMC-FZ20GN (shutter: 8 to 1/2,000 s) and Canon™A85 (shutter: 15 to 

1/2,000 s). 
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Fig. 1 – Definition sketch of a positive surge. Positive surge for an observer standing on the bank 

2.1 ADV METROLOGY. 

ADV measurements are performed by measuring the velocity of particles in a remote sampling 

volume based upon the Doppler shift effect [28, 29]. An ADV system records simultaneously four 

values with each component of a sample: the velocity component, the signal strength value, the 

correlation value and the signal to noise ratio. Past and present experiences demonstrated many 

problems because the signal outputs combine the effects of velocity fluctuations, Doppler noise, 

signal aliasing, turbulent shear and other disturbances [22, 30, 31]. For all experiments, present 

experience demonstrated recurrent problems with the velocity data, including low correlations and 

low signal to noise ratios. The situation improved drastically by mixing some vegetable dye (Dytex 

Dye™ Green) in the entire water recirculation system (Figs. 5–7). The vegetable dye introduced 

some very fine particles in the water, increasing in turn the number of excited particles in the ADV 

control volume. The effect of added dye was to increase the time-averaged signal correlations and 

time-averaged signal to noise-ratios. The buoyancy effect was negligible since the dye particles 
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were neutrally buoyant. 

While several ADV post-processing techniques were devised for steady flows [31, 32], these post-

processing techniques are not applicable to unsteady flows [22, 33]. In the present study, unsteady 

flow post-processing was limited to a removal of communication errors and a replacement by linear 

interpolation. Note also that spurious data collected by the acoustic displacement meters were 

removed and the removed points were obtained by linear interpolation of end points. The method is 

known for the absence of bias. 

2.2 STEADY-STATE CONDITIONS 

Some detailed measurements of the velocity distributions were performed in the steady flow at x=5 

m. The results showed that the inflow conditions were partially developed. The boundary layer 

thickness was about δ/d0=0.265, where d0 is the initial flow depth. Note that the thickness of 

boundary layer was calculated by comparing the experimental data with Prandtl 1/7 power law. 

This result was close to and consistent with the earlier studies of Koch and Chanson [22] with a 

lower flow rate and of Chanson [23] with a Q=0.058 m³/s and a smooth bed, where δ/d0 was 0.32. 

Fig. 2 presents the dimensionless vertical velocity profile on the channel centreline (y/W =0.5), 

where W is the channel width. In the boundary layer, the longitudinal velocity profile favorably 

compared to a 1/7th power law. The boundary layer characteristics were calculated. The velocity 

data were in agreement with theoretical velocity profiles in turbulent boundary layer and to some 

experimental data collected by Osterlund [34] in a large wind tunnel operating at comparable 

Reynolds numbers (Fig. 3). From the data best fit with the low law, the shear velocity was 

estimated: V*=0.0375 m/s close to the finding of Koch and Chanson [22] for a lower discharge. The 

findings demonstrated that the flume was hydraulically smooth and the flow was smooth turbulent. 
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Figs. 2–3 – Dimensionless velocity distributions in the initially steady flow. Time-averaged 

velocities Vx/V0 – Comparison between ADV data and 1/7th power law. (left) and between ADV 

data, law of the wall and Osterlund [34] (right) 

 

Fig. 4 – Dimensionless distributions of normal Reynolds stresses v’x²/V*² and v’y²/V*² in the initially 

steady flow. Comparison with the data of Koch and Chanson [22], De Graaf and Eaton [35] and 

Tachie [36] 

Fig. 4 presents the dimensionless distributions of normal Reynolds stresses v’x²/V*² and v’y²/V*² as 
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functions of z/δ on channel centerline. The ratio v’y²/v’x² was in average about 0.32, which is close 

to the previous results, e.g. 0.28 from Koch and Chanson [22] and 0.24 from Chanson [23] (Table 

2). The data showed further a good qualitative agreement with the detailed experiments of De Graaf 

and Eaton [35] in a large wind tunnel and Tachie [36] in smooth open channel flows. 

2.3 POSITIVE SURGE GENERATION 

The study of positive surges was conducted with one set of initial flow conditions (Table 1). The 

experimental setup was selected to generate both undular (non-breaking) and breaking (weak) 

surges with the same initial conditions. The initial flow conditions were supercritical (Eq. (3)). The 

only dependant parameter was the downstream gate opening after closure. Steady gradually-varied 

flow conditions were established for at least 5 min prior to measurements and the flow 

measurements data acquisition was started about 1.5 min prior to gate closure. A positive surge was 

generated by the rapid partial closure of the downstream gate. The gate closure time was less than 

0.2 s [22, 26]. After closure the surge propagated upstream and each experiment was stopped when 

the bore front reached the intake structure. 

Six gate openings after closure were tested (Table 1). In Table 1, hg is the gate opening and the 

surge front celerity U was calculated using the displacement meters data between x=6 m and 4 m; 

also, d0 was measured at x=5 m and dconj was derived using Eq. (1). Lastly in Table 1 the data for 

Run 60-1, 60-6 and Run 60-7 refer to the average of 23 runs with the same gate opening but 

different vertical elevation z for the ADV system sampling volume. 

The free-surfaces were studied using seven displacement meters. For three cases, detailed velocity 

measurements were also performed using the ADV system located at a distance x=5 m downstream 

of the channel intake and on the channel centerline. The earlier work of Koch and Chanson [22] 

showed little transverse differences but close to the sidewall where the ADV system was further 

adversely affected by the sidewall proximity. Note that, if the structure of flow in positive surges is 

generally 3D, previous studies showed a quasi-2D free-surface in breaking, weak surges [22]. 

The experimental results were compared to previous literature data, whose flow conditions are 

listed in Table 2. Note that flume and channel experiments refer to laboratory and field experiments 
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respectively. 

Table 1 – Experimental flow conditions 

Run Q – m³/s d0 – m hg – m Type U – m/s dconj – m Fr Remarks 
60-1 0.060 0.1387 0.050 Undular 0.777 0.215 1.408 No ADV 
60-1 0.060 0.1447 0.050 Undular 0.753 0.209 1.328 ADV measurements
60-2 0.060 0.1396 0.040 Undular 0.857 0.228 1.466 No ADV 
60-3 0.060 0.1396 0.025 Undular 0.875 0.231 1.483 No ADV 
60-5 0.060 0.1403 0.010 Weak 0.946 0.242 1.536 No ADV 
60-6 0.060 0.1369 0.005 Weak 0.911 0.238 1.543 No ADV 
60-6 0.060 0.1429 0.005 Weak 0.918 0.237 1.484 ADV measurements
60-7 0.060 0.1427 0.100 Undular 0.519 0.171 1.149 ADV measurements

Table 2 – Previous experimental investigations on positive surges 

References Q – m³/s d0 – m hg – m Type U – m/s dconj – m Fr Remarks 

Favre [6] --- 0.106 to 
0.265 

--- Undular --- --- 
1.05 to 

1.21 
Flume exp. 

Benet and 
Cunge [17] 

0.002 to 
0.006 

0.057 to 
0.150 

--- 
Undular 
& Weak 

--- --- 
1.05 to 

1.33 
Flume exp. 

Benet and 
Cunge [17] 

13 to 235 6.61 to 
9.21 

--- 
Undular 
& Weak 

--- --- 
1.06 to 

1.16 
Channel exp.

Benet and 
Cunge [17] 

270 to 
300 

5.62 to 
7.53 

--- 
Undular 
& Weak 

--- --- 
1.06 to 

1.16 
Channel exp.

Treske [20] 0.04 to 
0.16 

--- --- Undular --- --- 
1.04 to 

1.38 
Flume exp. 

Koch and 
Chanson [22] 

0.040 0.0785 to 
0.0795 

0.010 to 
0.092 

Undular 
& Weak 

0.140 to 
0.682 

0.096 to 
0.156 

1.31 to 
1.92 

Flume exp. 

Chanson [23] 0.058 0.1385 0.100 Undular 0.553 0.169 1.17 
Flume exp. – 
2 type of bed 

roughness 

Chanson [24] 0.019 to 
0.051 

0.101 to 
0.205 

0.009 to 
0.061 

Undular 
& Weak 

0.680 to 
1.316 

0.209 to 
0.404 

1.09 to 
1.95 

Flume exp. 

2.4 REYNOLDS STRESS ESTIMATES IN RAPIDLY-VARIED FLOW MOTION 

In turbulence studies, the measured statistics are based upon the analysis of instantaneous turbulent 

velocity data: 

VVv                                                                                                                                   (4) 

where V  is a time-average velocity. If the flow is gradually varied, V  must be a low-pass filtered 

velocity component, or variable-interval time average VITA [37, 38]. This technique is based upon 

a Fourier decomposition and was previously applied to a positive surge [22, 23, 38]. The cutoff 

frequency must be selected such that the averaging time is greater than the characteristic period of 
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fluctuations, and small with respect to the characteristic period for the time-evolution of the mean 

properties [39]. In highly unsteady flows, experiments have to be repeated many times, and the 

turbulent velocity fluctuation becomes the deviation of the instantaneous velocity from the 

ensemble average [22, 38]. 

In undular surge flows, the Eulerian flow properties showed an oscillating pattern with a period of 

ranging from 1.01 to 1.87 s that corresponded to the period of the free-surface undulations. The 

unsteady data were therefore filtered with a low/high-pass filter threshold greater than 0.99 Hz (i.e. 

1/1.01 s) and smaller than the Nyquist frequency (herein 25 Hz). The cutoff frequency was selected 

as 1 Hz based upon previous experiences [22, 23]. The same filtering technique was applied to both 

longitudinal and transverse velocity components, and for both weak and undular surge experiments. 

The Reynolds stresses were calculated from the high-pass filtered signals. 

3. BASIC FLOW PATTERNS. 

Non-intrusive unsteady free-surface measurements were performed for a range of partial gate 

closures (Table 1). For large gate openings, the surge propagation was relatively slow and the bore 

front was followed by a train of well-formed undulations: this is typical of an undular surge. At the 

lowest Froude number, i.e. Fr=1.15 (Run 60-7), the free-surface undulations had a smooth 

appearance and no wave breaking and no formed roller was observed (Fig. 5).  

 

Fig. 5 – Undular surge, Run 60-7. Lateral view (left) and looking downstream at the incoming first 

wave crest (right) 
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Fig. 6 – Undular surge with some breaking, Run 60-1. Lateral view (above) and looking 

downstream at the incoming wave crest (below) 

 

However some cross-waves, or sidewall shock waves, were seen developing upstream of the 

propagation of the first wave crest and intersecting next to the first crest. The cross-waves 

propagated behind the first wave crest, they were reflected on the opposite sidewall and they gave a 

lozenge pattern to the free-surface. A similar cross-wave pattern was observed in stationary undular 

hydraulic jumps [40, 41] and undular surges [22, 23]. 

For intermediate-surge Froude numbers, in the range from 1.3 to 1.45−1.5, some wave breaking 

was observed at the bore front and the ensuing free surface undulations were flatter (Fig. 6). The 

surge front celerity was greater than that of non-breaking undular surges (Table 1, column 6). 

For Fr>1.5, breaking (weak) surges were observed (Fig. 7). They propagated at a relatively faster 

speed, and the free-surface appeared to be quasi-two-dimensional, whereas previous studies 

demonstrated that undular surges have a three-dimensional flow structure [22]. Also, the bore front 
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was associated with some air entrainment in the roller (Fig. 7). 

 

Fig. 7 – Breaking surge, Run 60-6. Lateral view (left) and looking downstream at the incoming 

wave crest (right) 

For the entire range of investigations, the bore celerity ranged from 0.52 to 0.95 m/s (Table 1, 

column 6), while the wave period was 1.87 s and 1.01 s as seen by an observer fixed on the bank for 

Run 60-7 and Run 60-1 respectively. Overall the flow patterns were consistent with earlier studies 

[6, 20, 22, 23]. 

Typical instantaneous free-surface profiles are presented in Figs. 8, 9 and 10. Each curve shows the 

instantaneous dimensionless flow depth d/d0 as a function of the dimensionless time from gate 

closure t×(g/d0)
0.5. Note that the zero dimensionless time corresponded to 10.0 seconds prior to the 

first wave crest passage at the sampling location. Fig. 8 presents data for the undular surge (Run 60-

7) at two locations, i.e. x=6 m and x=5 m. The free-surface data showed a slight evolution of the 

positive surge shape as it propagated upstream. It is conceivable that the bore was not fully 

developed. However, the data tended to suggest a gentle reduction of the bore height with 

increasing distance from the downstream gate. This trend was consistent with a fully developed 

bore propagating against a non uniform gradually varied flow and with previous findings [22]. Also 

a general asymmetry of undulations was noted as discussed by Chanson [24]. 
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Fig. 8 – Undular surge, Run 60-7. Dimensionless instantaneous water depth d/d0 

Fig. 9 presents the instantaneous free-surface profile for the undular surge with some breaking (Run 

60-1) at two locations, i.e. x=6 m and x=5 m. It could be noted that the period of surface undulations 

was smaller than for Run 60-7. 

Finally, Fig. 10 shows data for the weak surge (Run 60-6) at x=6 m and x=5 m. The roller passage 

was associated with a marked discontinuity of the free-surface, although the free-surface elevation 

rose slowly immediately prior to the roller, with the free-surface curving upwards ahead of the 

roller toe [22]. The maximum water depth was very similar in the two locations 

The free-surface profiles at x=5 m were not significantly affected by the vertical elevation of the 

ADV system. In a fully-developed surge, the ratio of conjugate depths (dconj/d0) must satisfy the 

continuity and momentum equations (Eq. (1)). Present experimental results were generally close to 

those predicted by the momentum principle, although some undular surge data gave lower 

conjugate depth ratios. 

Both in Figs. 8, 9 and 10, some spurious points and missing data could be noted. The acoustic 

displacement meter output was a function of the strength of the acoustic signal reflected by the free-

surface. When the free-surface was not horizontal, some erroneous points were recorded. These 

were relatively isolated and easily ignored. 
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Fig. 9 – Undular surge with some breaking, Run 60-1. Dimensionless instantaneous water depth d/d0 

 

Fig. 10 – Breaking surge, Run 60-6. Dimensionless instantaneous water depth d/d0 

4. UNDULAR SURGES. FREE-SURFACE PROPERTIES. WAVE HEIGHT 

ATTENUATION 

A key feature of undular surges is the secondary wave motion illustrated in Figs. 8–9 with the 

dimensionless time variations in the water depth at several longitudinal distances for Fr=1.15 and 

1.35. In surges and hydraulic jumps, the equation of conservation of momentum may be applied 

across the jump front together with the equation of conservation of mass [1, 2]. When the rate of 
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energy dissipation is negligible as in an undular surge, there is a quasi-conservation of energy. Let 

us follow the surge in the system of coordinates in translation with the undular surge front. The 

equations of conservation of momentum and energy can be rewritten as [24]: 
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where M is the momentum function, E is similar to the energy per unit mass, also called the specific 

energy, and d is flow depth. For a surge in a rectangular channel, dc equals: 

  
3

2
00

c g

d UV
d


                                                                                                                 (7) 

Note that Eq. 5 is always valid but Eq. 6 is an approximation only applicable to an undular surge 

with a small Froude number close to unity. In this case, Eqs. (5) and (6) may be considered as a 

parametric representation of the relationship between the dimensionless momentum M/dc² and 

energy E/dc [9, 24]. The function M-E has two branches intersecting at M/dc²=1.5 and E/dc=1.5 (Fig. 

11, left). The branches represent the only possible relationship between M/dc² and E/dc in a surge if 

both Eqs. (5) and (6) hold. The right branch of the curve M-E corresponds to the supercritical flow 

while the upper branch (or left branch) corresponds to a subcritical flow. 

Fig. 11, right, presents a comparison between Eqs. 5–6 and some experimental data for Run 60-7 

and Run 60-1. The graph includes the initial flow conditions and the undular flow data between the 

first and fourth wave crests. The data justified the approximation of negligible energy losses, i.e. 

Eq. (6), because all the data were located on the parametric curve M-E. The finding was consistent 

with [24]. Furthermore the undular flow data was on the subcritical flow branch of the M-E curve. 

Also, there is a greater momentum function and specific energy at the first wave crest than in the 

initial flow (blue empty square and red empty circle). This was because Eqs. (5) and (6) are based 

on the assumption of hydrostatic pressure distribution, but the free-surface curvature at the wave 

crest implies a pressure gradient less than hydrostatic, hence a smaller specific energy. 
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Fig. 11 – Dimensionless relationship between momentum and energy fluxes in undular surges. 

Definition sketch after [24] (left) and experimental data for Run 60-7 and Run 60-1 (right) 

For sinusoidal water waves, Ippen and Kulin [42] developed an estimate for the wave amplitude 

attenuation due to boundary friction as: 
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where Δd is the attenuated positive wave height at a distance (x0−x) from the reference location x0, 

where the wave height is Δdx=x0, d is water depth measured at x, and f is Darcy-Weisbach friction 

factor. The undular surge propagation data showed some attenuation of the wave height Δd with 

increasing distance of bore propagation as previously shown by [23]. 
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Fig. 12 – Undular surges. Wave height attenuation (left) and wave dispersion (right) 

Fig. 12, left, presents the averaged data for Run 60-7 and Run 60-1, which are compared to Eq. (8) 

assuming f = 0.01 [23], and to previous data for smooth bed, Q=0.058 m³/s and Fr=1.17 [23]. The 

experimental data were in agreement with the previous literature data [23, 42], whereas for larger 

(x-x0)/d0 they were below Eq. (8). Moreover, the attenuation was lower for the undular surge with 

some breaking (Run 60-1). This was expected since for this surge the wave height was quite similar 

at different measurement points (Fig. 9). Note finally that Eq. (8) holds strictly only for an undular 

surge. 

The undular wave period and wavelength data were further compared to the wave dispersion theory 

for gravity waves in intermediate water depths. For a wave propagating upstream in presence of a 

current with an initial velocity V positive downstream, the linear wave theory yields a dispersion 

relationship between the angular frequency 2π/T and wave number 2π/Lw: 
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where Lw is wavelength and d is the initially still water depth [43, 44]. For the free-surface 

undulations of an undular surge propagating against a current with an initial velocity V0, Eq. (9) 

becomes: 
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In Fig. 12, right, Eq. (10) is compared to averaged experimental data from Run 60-7 and Run 60-1 

and with previous literature data [23, 24]. The averaged data from Run 60-7 was in good agreement 

with previous data, as well as with Eq. (10), but the averaged data from Run 60-1, where some 

breaking was observed, was quite above Eq. (10). However it must be stressed that Eq. (10) was 

developed for regular waves rather than for the undular bore secondary waves. 

5. CONCLUSION. 

New experiments of positive surges were conducted under controlled flow conditions in a large 

channel. Detailed turbulence measurements were performed with a high-temporal resolution (50 

Hz) using side looking acoustic Doppler velocimetry and non-intrusive free surface measurement 

devices. Using the same initially steady flow conditions, several experiments were performed in 

non-breaking and breaking surges propagating upstream against the initial flow. The dependant 

variable was the downstream gate opening after closure. 

Both undular and breaking surges were observed. At the lowest surge Froude numbers, i.e. Fr=1.15, 

the bore was an undular surge. The wave front was followed by a train of well-formed free surface 

undulations. Some breaking was seen at the first wave crest for Fr in the range from 1.3 to 1.5. For 

larger surge Froude numbers, i.e. Fr > 1.7, a weak breaking surge was observed. The range of 

Froude numbers corresponding to each type of surge was consistent with the literature findings [22, 

23]. Furthermore, a detailed analysis of undular surges characteristics was carried out. First, the 

experimental results matched the M-E function proposed by Benjamin and Lighthill [9], implying 

that the rate of energy dissipation was small to negligible. Second, the experimental data for wave 

amplitude attenuation with increasing distance of surge propagation were in agreement with Ippen 

and Kulin theory [42]. Third, the undular wave period and wave length data were relatively close to 

the values predicted by the wave dispersion theory for gravity waves in intermediate water depths 

[43]. 

In a companion paper [45], a comparison between previous literature theories and the experimental 

data for undular surges as well as the results about the unsteady flow field including Reynolds 
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stresses will be presented. 
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